With the rapid development and application of microprocessing technology, the requirements of three dimensional (3D) profile measurement become hihger and higher. However, the accurate 3D profile measurement of micro device with the feature sizes from several micrometers to several hundreds of micrometers, especially the measurement of the most important geometric figure - microphere, become a scientific problom to be solved urgently. Being Aimed at the measurement of microphere and different from the current measurement methods and technologies of sphere body, new method and technology are proposed in this project. Using tungsten probe with large aspect ratio and very sharped tip, and based on the characteristics of the piezo-electrical element's resonant vibrating parameters which are sensitive to external microforce, new scanning probe measurement method and technology which can applied to measurement of microstructures with depth-to-width ratio will be proposed. Based on the method and technology, differential scanning probe method and technology will be studied to achive the 3D profile measurement of microsphere with nano resolution. Furthermore, the evalution method of microshpericity with the accuracy of nanometer will be studied based on this method. Theoritically, based on the scanning prope technology with large aspect ratio, the 3D profile measurement method and technology for submeter scale and with nanometer will be established by theorical analysis, modelling and simulation, and experimental verification. Experimentally, the experimental system for the 3D profile measurement of microsphere with the resolution of 1 nm and repetability of 10 nm will be installed. Finally, using an integrated optical fiber micro probe as the experimental object, the application of the microshphere measurement technoloy will be studied.
随着微细加工技术的快速发展,对三维轮廓的测量要求越来越高。但几何特征尺寸在数微米至数百微米范围内的微器件三维轮廓准确测量问题,尤其是最重要几何形体--微球的测量问题,成为急需解决的科学难题。针对微球测量,有别于现有球体测量方法和技术,本项目拟研究新的测量方法和技术:利用大长径比、顶尖尖锐的钨探针,基于谐振压电敏感元件谐振参数对外力极其敏感的特性,研究可实现大深宽比测量的扫锚探针测量方法和技术;在此基础上,提出差动扫描探针测量方法和技术,实现纳米分辨力的微球三维轮廓测量,并以该测量方法为依据,研究纳米量级精度的微球球度评定方法。在理论研究上,本项目拟基于大长径比的扫描探针技术,通过理论分析、建模仿真和实验验证,建立亚毫米尺度内的、纳米量级精度三维轮廓测量方法和技术;在实验研究上,构建分辨力1nm、重复性10nm的微球三维测量实验系统,并以一体式光纤微探头为实验对象,研究微球测量技术的应用。
随着微细加工技术的快速发展,对三维轮廓的测量要求越来越高。但几何特征尺寸在数微米至数百微米范围内的微器件三维轮廓准确测量问题,尤其是最重要几何形体--微球的测量问题,成为急需解决的科学难题。..有别于现有球体测量方法和技术,给出了一种新的微球测量方法。基于石英音叉谐振振幅对外力极其敏感的特性,与大长径比、尖锐的钨探针相结合,在已有研究基础上,通过本项目的实施,发展形成了可实现大深宽比测量的扫锚探针测量方法和技术,研制出了可以实现亚毫米量级高度差轮廓测量的扫描测头,并开发了相应的控制技术。实验结果证明,所研制测头具有0.3nm分辨力、探针有效长度接近180微米。理论上,该测头可实现台阶高度超过150微米的亚纳米分辨力微结构形貌测量。除了实现本项目的研究目标外,正在对该测头及相关技术进一步完善和优化,希望拓展其应用范围。..基于开发的大长径比扫锚探针技术和研制的扫描测头,利用双扫描测头,采用差动运动和测量方式,提出、分析并证明了基于双测头的微球轮廓测量方法,开发了微球几何量(圆度、球度和球径)的高精度测量技术。基于所提方法和技术,研制出了微纳米三坐标测量机探头顶端微球的圆度、球度和球径的测量实验系统。通过分别对球径303微米的标准红宝石微球和球径约250微米自制光纤球的几何参数(圆度、球度、球径)测量,验证了所提方法证的正确性,和技术与实验系统的有效性。实验结果表明,测量系统的分辨力优于1nm(实际获得的分辨力约0.3nm)(标准差)、测量重复性优于10nm(标准差)。另外,根据实验效果,理论上该系统可实现球径500微米的微球几何参数的高精度测量,目前该实验仍在进行中,近期有望验证。..针对所提微球测量方法和所开发的测量技术,提出、分析并仿真验证了高精度微球的圆度(球截面)、球度评定方法。通过仿真和实验数据验证,所提出的评定方法完全符合最小包容区域法,并具有很好的适应性和鲁棒性。本项目所建议方法对本项目的球度测量给出了准确的球度评定。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
自然灾难地居民风险知觉与旅游支持度的关系研究——以汶川大地震重灾区北川和都江堰为例
气载放射性碘采样测量方法研究进展
五轴联动机床几何误差一次装卡测量方法
表面形貌三维MOTIF评定方法及相关测量技术研究
彩色视觉测量校准、评定及应用关键技术研究
圆柱度误差干涉拼接测量方法及评定指标体系研究
汽车钢板表面毛化纹理评定方法及现场形貌测量仪的研究