The collinear libration points play an important role in the field of deep space exploration, they have many great applications, and can be viewed as an invaluable space resource. The variety of dynamical behavior in the vicinity of collinear libration points is very rich, which poses both challenge and opportunity to orbit design and control. Center manifold can fully describe all the bounded motion around the collinear libration points. Fully appreciate this kind of dynamical structure can leads to many novel design and control solutions. Having this structure in mind, this project tries to study the efficient computation of center manifold, low-cost transfer problem, general station-keeping strategy, and “loose” control strategy of orbit correction and insertion. Many new ways of thinking has been investigated. Through this kind of study, the design space of libration point orbit mission is fully unfolded, all kinds of libration point orbits are at disposal throughout mission planning and operation phases. New insights and results gained from this research can be extended naturally to formation flying problems. It also can support future deep space exploration missions, and possibly reduce mission costs and risks.
共线平动点区域具有丰富的动力学特征,该点附近的中心流形结构完整描述了周期、拟周期等有界运动行为,中心流形不同于稳定、不稳定流形,有关其应用的研究还不充分。本项目以平动点中心流形的应用为主线,研究借助中心流形及其同宿、异宿连接,实现平动点附近多种周期、拟周期轨道间低能量转移的途径,探索基于投影到中心流形的周期、拟周期轨道通用稳定控制策略,研究中心流形的高效计算方法、中心流形投影方法的多种变式、轨道维持时的漂移现象,以及考虑机动误差时的优化控制策略。通过该项研究能够明确平动点任务的完整设计空间和设计边界。研究成果可应用于平动点编队飞行及交会对接任务,为我国平动点探测提供新的轨道方案,降低探测的成本和风险。
本项目以平动点中心流形的应用为主线,研究共线平动点任务的轨道设计和控制问题,包括多种类型的低能量转移轨道设计,平动点轨道通用的稳定维持策略和转移轨道策略。重点关注动力系统中心流形在平动点轨道设计和控制中的应用。首先设计了一套全新的中心流形轨道通用数值计算方法,该方法是后续研究展开的基础,利用该方法我们将中心流形的计算推广到了更大的能量范围,首次观察到了中心流形上的复杂分形结构和混沌运动行为,在国际上未见报道。其次,设计了两套通用的稳定维持策略,一套针对半分析型中心流形方法,一套针对全数值型中心流形方法,该方法充分整合了中心流形的动力学特征,是一种适用于各种周期、拟周期轨道的通用策略,在能量较高的情况下,该方法甚至可用于中心流形上混沌轨道的稳定控制,在国际上未见报道。首次提出了同一中心流形上不同轨道间的转移策略,由于充分借助了中心流形的稳定、不稳定流形作为转移通道,所得的单脉冲转移是一种最优的轨道间转移策略。首次提出了一种系统计算中心流形同宿、异宿连接的方法,实现了两个平动点附近多种周期、拟周期轨道间低能量转移的途径。本项目的研究表明,由于中心流形给出了平动点区域所有有界轨道一个完整而系统的描述,在该框架下轨道转移和控制问题可以不再针对某条名义轨道而孤立地进行,而是能够扩展为对整个设计空间有一个全局的认识,使Halo轨道、Lissajous轨道、Quasi-Halo及其分岔轨道等各种设计可能性之间有机地相互联系起来,因此本项目所取得的基于中心流形的研究方法是对平动点动力特性进行深层探索的有效途径。
{{i.achievement_title}}
数据更新时间:2023-05-31
内点最大化与冗余点控制的小型无人机遥感图像配准
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
氯盐环境下钢筋混凝土梁的黏结试验研究
格雷类药物治疗冠心病疗效的网状Meta分析
敏感性水利工程社会稳定风险演化SD模型
日地平动点深空探测任务的轨道设计与控制方法研究
平动点任务节能轨道设计与优化技术研究
深空探测转移轨道机理与优化方法研究
利用Halo轨道流形设计小推力深空飞行最优转移轨道