To meet the national requirement of marine power strategy, this project focuses on the key frontier problem on autonomously cooperative control of multiple unmanned surface vehicles (USVs). Considering the restricted maritime communication and complex marine environment, this project investigates the formation control for a group of under-actuated USVs subject to incomplete state information, parameter model uncertainties, and disturbances induced by wind, waves and currents. By the integration of guidance, estimation and control, distributed cooperative guidance and control of under-actuated USVs under non-periodic communication are deeply explored. A distributed cooperative path following control method is proposed based on an event-triggered mechanism, such that the network communication burden, the sampling frequency and the control energy consumption are significantly reduced. In addition, the safety for collaborative operations and connectivity for communication network are guaranteed. The stability of the closed-loop system is analyzed by resorting to the tools of graph theory, simultaneous Lyapunov inequalities, input-state-stability, cascade system stability, etc. The effectiveness of the proposed control methods will be verified based on a physically experimental platform. Through deep and meticulous research, this project will systematically establish guidance law with non-periodic communication, estimation method with non-periodic updating, and control law with non-periodic execution for distributed cooperation of multiple under-actuated USVs. The successful completion of the proposed project will provide theoretical and technical support for the collaborative ocean operations subject to the constraints in terms of environment, communication and energy, and substantially promote the progress and development for cooperative control of multiple USVs.
本项目面向国家海洋强国的战略需求,围绕多无人船自主协同控制这一前沿科学问题开展研究。考虑海上通讯受限和复杂环境约束,针对状态信息不完全、模型参数不确定、风浪流扰动下的欠驱动无人船编队系统,从制导、估计、控制一体化的角度出发,深入探索非周期通讯的欠驱动多无人船协同制导与控制理论,建立基于事件触发机制的分布式协同路径跟踪控制方法,显著减轻通讯负担、减少采样频率、降低控制能耗,并保证协同作业的安全性和编队网络的连通性。综合应用图论、瞬时李雅普诺夫不等式、输入状态稳定性、级联系统稳定性等工具分析闭环系统的稳定性和收敛性,并在物理实验平台上对所提方法有效性进行实验验证。通过深入细致的研究,系统地建立面向多无人船分布式协同的非周期通讯制导、非周期更新估计、非周期执行控制方法,为环境、通讯、能量约束下的多无人船协同海洋作业提供理论技术支撑,显著推动多无人船协同控制研究的进步与发展。
在海上通信受限和复杂环境约束下,深入探索非周期通信的欠驱动多无人船分布式协同制导与控制问题,系统地建立了基于事件触发机制的多无人船分布式协同控制理论。具体而言,第一,针对海上通信受限、复杂环境约束下的欠驱动多无人船协同路径跟踪问题,建立了基于事件触发通信的分布式协同制导方法,显著减少无人船之间的信息交换量。第二,针对状态信息不完全、模型参数不确定、风浪流扰动下的多无人船协同系统,建立了基于事件触发更新的无人船状态观测与扰动估计方法,基于位置和角度信息实现对速度信息、内扰与外扰的统一估计,显著减少采样频率。第三,考虑无人船控制器能源受限、输入饱和问题,建立了基于事件触发机制的无人船协同路径跟踪控制器设计方法,减少执行机构的动作频次,显著降低系统控制能耗。第四,完善了现有网络化多无人船实验平台,在试验水池、试验港池以及实际海洋环境中对所提欠驱动多无人船分布式协同制导与控制方法进行实验与验证,验证了所提方法的有效性。.研究结果在IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Intelligent Vehicles, IEEE Transactions on System, Man, and Cybernetics: System, Ocean Engineering等国际学术期刊和会议中发表基金标注SCI/EI检索论文33篇,其中SCI检索期刊论文27篇。在多船舶编队协同控制领域申请/授权国家发明专利15项。获高等学校科学研究优秀成果奖二等奖1项,海洋工程科学技术一等奖1项,交通运输重大科技创新成果2项。项目负责人入选中国科学技术协会青年托举人才,辽宁省百千万人次工程万层次人才,大连市优秀青年科技人才等荣誉称号。该项目从理论和实践两方面进一步推进了无人船集群控制技术的研究进展。
{{i.achievement_title}}
数据更新时间:2023-05-31
内点最大化与冗余点控制的小型无人机遥感图像配准
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于协同表示的图嵌入鉴别分析在人脸识别中的应用
多空间交互协同过滤推荐
基于事件触发机制的异质多智能体系统分布式协同控制
基于事件触发数字通信的多智能体系统分布式协同控制与优化
基于事件触发机制的多群组刚体姿态协同控制研究
基于事件触发机制的多智能体系统分布式协调控制研究