The marks appeared at the crime scene are often reflected in the stria forms. Currently, the major inspecting methods on marks are form comparisons and qualitative analysis, depending mostly on subjective factors and lacking of quantitative measurements and standards. It has been a long time since a breakthrough on the quantitative examination method of marks has been found and this issue is unsolved around the globe. .This project is based on the nonlinear theory to study the nonlinear dynamic characteristics on the marks’ surface and to improve and establish the algorithm of nonlinear parameters. The first step is to apply the wavelet transform and to recover and extract the useful information of marks’ surface, and to show the essential characteristics of marks. The second step is to use multiple single nonlinear paramters to construct the fractal evaluation function and to define the “fractal measurement" in order to extract marks’ features. The third step is to introduce the complexity and other nonlinear parameters to build a nonlinear multi parameter set and define the “nonlinear multi parameter measurement". Last but not the least, the fourth step is to use the marks’ peak evaluation values and closeness function to construct the marks’ identification hybrid model and to achieve the innovative quantitative examination methods. .The purpose of this project is to apply the modern nonlinear theory on the marks’ inspection area and to solve practical issues, to promote the substantial progess and reach a siginificant breakthough on the marks’ inspection area, to stimulate the research and the inspire new ideas to the next level, and to provide great theoritical and pragmatic value in this area.
犯罪现场上出现的痕迹常常以线条状的形貌反映出来,目前检验手段是形态比对和定性分析,依赖主观因素,缺乏量化手段和评判标准,长期以来未找到量化检验方法的突破口,至今是各国尚未能解决的难题。本研究以非线性理论为基础,研究痕迹表面非线性动力学特征,改进和建立非线性参数算法;通过应用小波变换方法,恢复和提取痕迹表面的有用信息,凸显痕迹本质特征;对于多个单一非线性参数,构建分形评判函数,定义“分形特征测度”量用于提取特征;引进复杂度等其他非线性参数,得到一个非线性多参数集合,定义“非线性多参数测度”,并利用痕迹峰值评价函数值及贴近度函数,建立痕迹识别混合模型,得到痕迹量化检验识别的新方法。本研究将现代非线性理论应用于痕迹检验领域并解决实际问题,推动该学科实质性的进展,使痕迹检验理论具有全新的重大的突破,促进研究的观念和思维方式转向新的层次和空间,对于提高痕迹检验水平具有重大的理论价值和实际应用价值。
本课题以线条状痕迹量化检验识别为研究背景,针对痕迹检验展开相关的非线性理论和新技术及新方法的研究。其成果如下:在理论方面,将痕迹检验理论建立在现代系统科学的先进思想基础之上,成功地将非线性理论引入痕迹检验领域,使痕迹检验理论有新的重大突破,产生一个由线性理论跨入到非线性理论的飞跃,对于国内外痕迹检验学科的发展具有十分重要的意义;在痕迹检验鉴定技术方面,提出多种量化检验鉴定技术新方法,如双谱法、能谱法、多参数融合法等用于痕迹检验识别,实现量化检验,解决长期困扰中外痕检工作者的一个难题。应用小波变换方法对痕迹表面观测数据“降噪”处理,消除污染和干扰,恢复和提取痕迹表面中的有用信息,凸显痕迹本质特征,获取主体特征曲线,以利于判定检材和样本之间的相同点与差异点,小波变换技术能从根本上消除差异点的存在,解决长期困惑检验工作者的差异点存在这一难题;应用三维表面形貌测量技术获取线条状痕迹的三维真实形貌数据,解决线条状痕迹实物提取不损坏、保全难的问题。本研究不仅为痕迹量化检验与分析识别提供了新途径,而且对深化痕迹检验理论和寻求新的痕迹检验技术方法,对提高痕迹检验鉴定水平都具有理论研究和现实应用意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
基于多模态信息特征融合的犯罪预测算法研究
坚果破壳取仁与包装生产线控制系统设计
气载放射性碘采样测量方法研究进展
犯罪工具痕迹鉴定基础理论及其定量化检验关键技术研究
痕迹检验中剪切截面的频谱分析与形貌特征识别技术的研究
谓词逻辑与模型检验中的计量化理论
非线性算子的理论研究及其在智能目标识别中的应用