Problems such as poor cycle stability, low rate and low charging efficiency have limited the development and application of Fe and Zn anode based alkaline energy storage systems (such as nickel-iron batteries and nickel-zinc batteries). At present, using carbon to coat the Fe and Zn anode materials is an effective ways to improve their performance. However, the carbon coating process requires high temperatures, which will cause high energy consumption and lead to the agglomeration of the electrode materials; Meanwhile, the carbon coating itself cannot provide capacity, which limits the specific capacity of the anode materials. To solve these problems, this project proposes to use the organic-inorganic composite strategy to encapsulate the Fe3O4 and ZnO anode materials with quinones. The polymerization wrapping process does not involve high temperature and can effectively maintain the initial morphology of the anode materials; and the quinones themselves are very good anode materials for alkaline systems, therefore, when effectively limiting the deformation of Fe3O4 and ZnO, quinones themselves can also provide capacity. The preliminary experiment results show that quinone compounds of PAQS can be used to improve the performance of Fe3O4. Therefore, this project intends to investigate the mechanism of the performance improvement of PAQS coated Fe3O4, and discuss the selection principle of excellent quinone encapsulation materials. By further exploring the applicability of this composite strategy in Zn anodes, new strategies as well as essential theoretical foundation can be provided for the development of anode materials for alkaline systems.
负极材料Fe和Zn存在着循环稳定性差、倍率和充电效率低等问题,限制着相关碱性储能体系(如镍铁电池和镍锌电池)的发展。目前,用碳材料对Fe和Zn负极材料进行包裹限域是提升其性能的有效途径,然而碳层包裹过程中会涉及高温过程,能耗高,还会引起电极材料的团聚;另外,碳包裹层自身几乎不提供容量,限制了负极材料的比容量。针对此问题,本项目提出利用醌类有机材料对Fe3O4和ZnO负极材料进行包裹:聚合包裹过程不涉及高温,可以有效保持负极材料的初始形貌;醌类有机材料本身就是很好的碱性体系负极材料,在对Fe3O4和ZnO有效限域的同时,自身也能够提供容量。申请人前期的探索实验显示醌类有机材料PAQS可以很好的包裹提升Fe3O4的性能,因此本项目拟从研究PAQS对Fe3O4性能提升的机制入手,研究优良醌类有机包裹材料的选择原则,并探索该策略在Zn负极中的适用性,为碱性体系负极材料的发展提供新思路和理论基础。
水相储能体系在安全性和使用成本上具有突出优势,在大规模储能中具有巨大应用潜力。目前,水相储能体系在能量密度和循环稳定性等方面仍有提高的空间。本项目从电极材料以及储能体系的构建等方面对水相储能体系(特别是碱性储能体系)进行了研究。本项目提出了一种简单有效制备铁负极材料的方法,该方法原料价格低廉,具有连续可放大的特点,制备的铁负极材料材料比容量可达208 mAh g-1,大电流循环2000次容量衰减不到10%,组装的镍铁电池能量密度和功率密度可达101.0 Wh kg-1和8.2 kW kg-1;探究了硫属元素在碱性电池正极材料中的应用,实现了碲(Te)在碱性电解液中的稳定电化学储能,还构建了高性能的碱性储能体系;探究了二维金属硫属化物材料在水系储钠和储锌方面的应用,研究了形貌控制、异质结工程以及层间距调控对电极性能的影响;探索了酸性储能体系,利用聚苯胺和钨氧化物构建了高性能质子型超级电容器。总之,本项目针对碱性电池负极材料存在的问题,提出了简单有效的解决路径,同时还研究了二维层状结构材料在碱性电池正极以及储钠储锌方面的应用,为高性能水相储能体系的发展提供了新思路和理论支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
城市轨道交通车站火灾情况下客流疏散能力评价
基于二维材料的自旋-轨道矩研究进展
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
有机高电压醌氰类锂离子电池正极材料的研究
噻吩醌式n-型有机半导体材料
苯氧基萘并萘醌类光致变色材料的研究
有机/无机超晶格复合碲化铋基热电材料的性能及其提升机理研究