With the requirement of microminiaturization and lightweight of devices, dielectric capacitors of high energy density and charge-discharge efficiency have the potential to be widely applied in the modern industry and military power system. In order to obtain higher energy density and efficiency, the dielectric materials need to have a higher polarization and breakdown strength as well as lower dielectric loss. However, compared with some electrochemical energy storage such as the lithium ion battery and supercapacitor, the current dielectric capacitor suffers from the relatively lower energy density and high energy loss. This proposal is different from traditional nanocomposites which only use 0 dimensional,1dimensionl or 2 dimensional materials as fillers. The one-dimensional rod array and two-dimensional materials would be introduced into polymer simultaneously, to form laminated-structure and combine the merits of one dimensional fillers (large polarization) and two dimensional fillers (higher breakdown strength), thus improving the energy-storage performance. Furthermore, we will further explore the concrete regulation mechanism of laminated microstructure towards multiple coupling effects of the electrical, thermal and mechanical properties through constructing the theoretical model among the microstructure, multiple interface and energy-storage performance.This proposal could serve as an important guidance for the theoretical studies and energy storage performance of dielectric capacitors. And it also would greatly benefit for the lightweight and energy efficiency design of high energy-storage performance dielectric capacitors
微型化、轻量化的高储能密度高效率(高能高效)介电储能电容器在现代工业及国防领域有广泛的应用前景。高能高效介电储能电容器须同时具有高的极化强度、耐压能力以及低的能量损耗。目前介电储能材料的储能密度和储能效率仍然比较低。为解决此问题,本项目旨在突破聚合物复合材料中单一的零维、一维和二维填料对性能的改善,拟融合一维高取向阵列(高极化率)及二维材料(高耐电压能力)的优势,通过叠层结构的设计调控复合材料的储能性能;另外,本项目针对叠层复合材料的多重界面,构建“微结构-介电常数-耐击穿场强-储能性能”理论模型,深入探索其力、电和热协同作用耦合对储能性能的调控机制,该研究将为介电复合储能材料的理论研究和性能提升提供重要指导,对微型化、轻量化的高能高率介电储能电容器的发展具有重要意义。
本项目学科领域从属材料科学与工程,涉及材料的制备的相关技术与电学物理相关的理论科学。. 本项目旨在突破传统零维、一维及二维无机材料作为填料引入聚合物基体来提高复合材料的储能性能,拟融合一维阵列填料(高极化率)和二维纳米片填料(高击穿场强)的优势设计并调控复合介电材料的叠层微观结构,使一维和二维填料的性能优势实现“沟通”与“融合”,获得高储能密度、高储能效率的复合介电储能材料。本项目针对叠层复合材料的微结构,构建“微结构-介电常数-耐击穿场强-储能性能”理论模型,深入探索其微结构对储能性能的调控机制,揭示微纳米叠层结构设计对介电储能性能(储能密度、储能效率)的优化机理。该研究将为介电复合储能材料的理论研究和性能提升提供重要指导,对微型化、轻量化的高能高效介电电容器的发展具有重要意义。并以期开发出一个价格低廉、具有自主知识产权的实用材料。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
纳米复合介电储能材料的脉冲放电特性及机理研究
微纳米结构长余辉发光材料中纳米表面缺陷的储能机制研究
叠层结构MXene@氟化石墨烯/铁电聚合物复合薄膜的构筑及其介电储能增强机理研究
高密度储能电介质陶瓷的结构调控、介电性能与击穿机制研究