The technique of photonic compressive sensing can be applied in the fields such as radar reconnaissance in electronic countermeasure, wideband spectrum sensing in cognitive radio, and radio astronomy, which is a recently-developed interdisciplinary research area. Due to the limit of electronic bottle-neck, it is hard to improve the sampling rate of conventional analog-to-digital converters, which becomes an obstacle in the real-time acquisition of wideband signals. In many practical applications, the occupied spectrum by signals is only a small portion of the given wide bandwidth (i.e., the signals is sparse in spectrum). The technique of photonic compressive sensing, which combines the advantages of photonics and compressive sensing, can breakthrough the limit of the Nyquist sampling theorem. We propose the scheme of time-stretched photonic compressive sensing, which will be experimentally realized in the project. The scheme has both the advantages of the techniques of photonic time stretch and compressive sensing, which is able to acquire the wideband spectrally sparse signals with sampling rate far lower than the Nyquist rate and recover the original signal with high probability. We will also conduct research on novel structures of photonic compressive sensing such as compressive sensing-based photonic channlizers and photonic compressive sensing with microwave photonic filter. In this project, the research team will propose novel schemes on the key technologies of photonic compressive sensing and conduct deep theoretical and experimental investigations. We hope we can make concrete contributions on the technology improvement of this area.
光子学压缩感知技术可用于电子对抗雷达侦察、认知无线电宽带频谱感知和射电天文学等领域,是近年来出现的一个交叉研究课题。由于电子学瓶颈的限制,传统模数转换器的采样率很难大幅度提高,宽带信号的实时获取成为许多领域的障碍。很多实际应用中宽谱范围内信号所占的频谱实际上是很少的,即满足频谱稀疏性。本项目研究的光子学压缩感知技术,能充分挖掘光子学的大带宽优势,并结合压缩感知技术,以突破奈奎斯特采样定理的限制。项目组提出时间拉伸光子学压缩感知方案并将予以实验实现,该方案结合了光子学时间拉伸技术和压缩感知的优势,以极低的采样率对宽带稀疏信号进行采样,并能以高概率恢复原信号;并将在结合压缩感知的光子学信道化接收机、采用微波光子滤波的光子学压缩感知系统等方面开展新型结构探索。本项目将在光子学压缩感知的若干关键技术方面提出创新性研究方案,开展深入细致的理论和实验研究,期望能为推动相关领域的技术进步做出实际贡献。
光子学压缩感知技术可用于电子对抗雷达侦察、认知无线电宽带频谱感知和射电天文学等领域。由于电子学瓶颈的限制,传统模数转换器的采样率很难进一步提高,宽带信号的实时获取成为许多领域的障碍。很多实际应用中宽谱范围内信号所占的频谱实际上是很少的,即满足频谱稀疏性,本项目研究的光子学压缩感知技术,能充分挖掘光子学的大带宽优势,并结合压缩感知技术,以突破奈奎斯特采样定理的限制,以极低的采样率对宽带频谱稀疏信号进行采样,并能以高概率恢复原信号。在本项目的支持下,研究团队在时间拉伸光子学压缩感知技术、光子压缩感知型结构探索等方面开展了深入研究,在时域光子压缩感知的低通滤波、基于空间光调制器的随机混频、结合时间拉伸的光子压缩感知新结构、光子时间拉伸的参数标定、系统优化和实验实现等给出了许多新方案和新结果。本项目的部分重要研究结果包括:基于单片芯片低通滤波的光子压缩感知结构、采用非相干光源频域混频的光子压缩感知新结构、基于脉冲展宽和压缩的光子压缩感知系统理论建模、基于频域混频压缩感知的单像素成像技术、光子时间拉伸杂波分析和动态范围分析新理论模型、基于光子时间拉伸的模数转换系统等。我们相信上述研究结果有力地推动了光子压缩感知领域的技术进步。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于张量分解的光子学微波信号频域空域联合压缩感知研究
面向可穿戴设备的压缩感知关键技术研究
压缩感知雷达中感知矩阵自适应构建理论与关键技术研究
基于压缩感知的CMOS 图像传感器关键技术研究