Highly efficient energy storage device is one of the key techniques to address the global energy crisis and environmental pollution. A type of safe and environmentally friendly energy storage device called aqueous zinc-ion hybrid supercapacitors (ZHSs) has been developed recently, which exhibits great potential in boosting the energy density of the traditional electrical double-layer supercapacitor. However, the energy storage ability is still greatly hindered by the reluctant property of the key electrode materials for zinc-ion storage. This project aims at designing highly active electrode materials for the fabrication of high performance ZHSs. A series of porous manganese oxide/carbon composites with hierarchical array structures will be fabricated through annealing metal-organic framework grafted manganese oxide nanoarrays. The as-prepared composite materials with high electric conductivity, high surface area, porous structure, and high structural stability will be obtained through optimizing the reaction conditions, which will greatly enhance the electrochemical performance of the corresponding ZHSs. The change of the morphology, crystal phase, and elemental valence state of the composites under different charge/discharge state will be studied. Combining with theoretical calculation, we will elucidate the fundamental charge storage mechanism and performance enhancement mechanism of the composite materials. This project will not only benefit the synthesis of high performance zinc-ion storage electrode materials and related theoretical study but also make a great contribution to developing high performance, safe and eco-friendly ZHSs for various applications such as wearable/portable devices and hybrid electric vehicles.
高效储能器件是解决全球能源危机和环境污染问题的关键技术之一。最近开发的安全环保型储能器件水系锌离子超级电容器(ZHSs)在提升传统双电层超级电容器能量密度方面极具潜力,但其储能性能仍然由于储锌关键电极材料的性能不足而受到极大限制。本课题拟通过对高活性储锌电极材料的设计以制备高性能ZHSs,即对金属有机框架结构包覆生长的氧化锰阵列进行退火制备一系列多孔氧化锰/碳复合多级阵列电极。通过对反应条件的精细调控,使复合电极材料拥有高导电性、大比表面积、多孔性、高的结构稳定性等特点,从而大幅提升ZHSs的电化学储能性能。研究复合电极在不同充放电状态下晶体结构、形貌、元素价态等方面的变化,结合理论计算,阐明其电化学储能机理和性能增强机制。该项目将为未来高性能电极材料的制备和机理研究提供参考,推动高性能、安全、环保ZHSs在可穿戴设备、移动设备和混合动力电动车等方面的广泛应用。
先进电化学储能器件的发展已经成为当今世界前沿研究主流方向之一,其有助于解决全球能源危机和日益恶化的环境问题。高性能电极材料的设计合成是推动储能器件高速发展的关键所在,金属有机框架(MOF)材料具有种类丰富,合成条件温和,孔道结构规则有序且可调节性强等特点,有望用于开发高活性电极材料。本项目从MOF材料设计合成出发,在碳布、泡沫镍等基底上成功制备出一系列具有高电化学储能性能的MOF基纳米阵列材料,包括混金属MOF纳米阵列、锰基MOF衍生多孔金属氧化物纳米阵列、MOF衍生非晶态复合多级纳米片阵列、MOF衍生过渡金属氢氧化物多级阵列等。通过对反应条件的控制,掌握了合成产物微观形貌的变化规律,阐明了材料生长机理和电化学储能机理。并在此基础上,成功组装了混合超级电容器、锌离子电池等储能器件,并对其各项电化学性能进行了综合表征和实际应用评估。在该项目支持下,在Nat. Commun., J. Am. Chem. Soc., Small, Exploration,Chin. Chem. Lett., Inorg. Chem. Front.等学术期刊上发表SCI论文11篇,申请发明专利2项,培养研究生6名。本项目研究工作将为未来高性能MOF基电极材料的设计及新型储能器件的组装提供参考和原理指导,推动新型电化学储能器件的高速发展。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
MOF衍生金属氧化物/MXenes复合材料的合成与储能性能研究
多孔硅碳复合材料的结构设计与储锂性能研究
新型金属-有机多孔材料的制备及其储氢性能研究
硒/多孔碳复合电极的储锂性能研究