In order to match the urgent national need of precise monitoring and intellectualized service of electromagnetic spectrum, aiming at the current serious shortage problem of dynamic wide-area spectrum situation, we will systematically research the basic theories and key technologies of high dynamic wide-area spectrum situation. Concentrating on the problems of real-time perception, indepth extraction, fitting presentation, accurate prediction and others, this project will focus on the breakthrough of spectrum sensing of dynamic wide-area spectrum characteristics driven by different tasks, in order to solve the contradiction between high dynamic different spectrum characteristics and finite situation sensing samples. Secondly, this project will research the indepth understanding of complicated spectrum situation under conditions of massive sensing data, in order to extract the inherent features of complex structure signals including the aliasing of multiple signals, the characteristic of short burst and time-varying signals, and ambiguous position calibration of sensing sensors. Thirdly, we will explore the continuously fitting method, the evolution method and the intellectualized services of spectrum situations in three-dimensional spaces, in order to solve the shortage of dynamic evolution abilities of existing technologies. We will construct a high dynamic wide-area spectrum monitoring system and a spectrum situation presentation system in a typical application area of more than 10 square kilometers. The monitoring band of the spectrum is wider than 10GHz, the dynamic spatial granularity is less than 30m and the updating slot is less than 10 seconds. The theoretical architecture of spectrum situation will be established gradually and the new system will be formed for the intelligent spectrum monitoring which can support the decision making ability. Finally, this project will provide theoretical basis and technical supports for major national applications such as national security, military confrontation, spectrum resources programming and management.
面对我国电磁频谱精细化监测和智能化服务迫切需求,针对现有动态广域频谱态势研究严重匮乏现状,系统性开展高动态广域频谱态势相关基础理论及关键技术研究。围绕高动态电磁环境实时感知、深度提取、拟合呈现及准确预测等问题,重点突破面向频谱高动态特性的任务驱动广域感知,解决高动态差异化频谱特性与有限态势感知样本间的矛盾;研究海量数据条件下复杂频谱态势深度理解,解决多域混叠、突发瞬变、位置模糊等复杂信号特征提取等瓶颈问题;开展立体空间频谱态势连续拟合、推演和智能服务研究,解决现有技术无法动态展示态势演进规律的难题。拟在大于10km2典型应用场景构建监测频谱宽>10GHz、态势空间颗粒度<30m,动态刷新时间间隔<10s的高动态广域频谱监测及态势呈现系统,逐步建立频谱态势理论体系架构,形成具有决策支撑能力的智能频谱监测新体制,为国家安全、频谱资源规划与管理、军事对抗等国家重大应用需求提供理论基础与技术支撑。
“电磁频谱”是决定国家经济战略发展及军事信息化战争成败的关键,必须最大程度发挥其应有关键功能。然而,电磁频谱在时、频、空、能、波形等多维域呈现高动态复杂特性,使得频谱资源的科学监测、高效使用与决策规划等方面暴露出诸多亟待解决问题;针对这些问题,联合承研团队在国家自然科学基金重点项目《高动态广域频谱态势基础理论与关键技术》支持下,构建了大于10km2、监测频谱范围大于10GHz的网格化电磁频谱监测典型场景系统,以此为基础,围绕面向频谱高动态特性的任务驱动广域感知、基于海量数据的复杂频谱态势深度理解、立体空间频谱态势连续拟合、推演和智能服务等3大内容,开展了相关基础理论及关键技术研究,并完成了《电磁态势应用场景演示系统》软件平台设计与开发,形成了频谱态势空间颗粒度小于30m,动态刷新时间间隔小于10s的高动态广域频谱监测及态势呈现系统,通过频谱态势软硬件综合试验验证系统对相关关键技术进行验证测试;课题实施过程中,在信息领域国际期刊和国际会议发表学术论文92篇,其中IEEE Trans. Commun.,IEEE Commun. Mag.等SCI收录论文71篇,IEEE GLOBECOM,IEEE ICC等EI收录论文21篇;申请国家专利37项,授权29项;培养博士研究生11名、硕士研究生65名,项目组通过积极参与本领域主流国际会议、邀请国外专家访问等方式,与国内外同行进行了深入的学术交流与合作;通过本课题,逐步建立了频谱态势构建理论体系架构,形成具有决策支撑能力的智能频谱监测新体制,可有效提高电磁频谱态势对国家安全、频谱资源规划与管理、军事对抗等国家重大应用需求的服务支撑能力。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
论大数据环境对情报学发展的影响
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
内点最大化与冗余点控制的小型无人机遥感图像配准
广域动态频谱态势基础理论与关键技术研究
能利用非连续频谱空洞的动态频谱接入关键技术研究
认知网新型动态频谱管理关键技术研究
面向多授权网络的动态频谱共享关键技术研究