基于特征学习的图像内容篡改被动检测及恢复研究

基本信息
批准号:61806032
项目类别:青年科学基金项目
资助金额:24.00
负责人:毕秀丽
学科分类:
依托单位:重庆邮电大学
批准年份:2018
结题年份:2021
起止时间:2019-01-01 - 2021-12-31
项目状态: 已结题
项目参与者:刘群,周丽芳,张莉萍,卢影,魏杨,景如霞,王涌超,尚进跃,王凯丽
关键词:
图像取证篡改被动检测篡改恢复图像确信度图像内容安全
结项摘要

In recent years, fake image has become a concern in Internet, military and judicial areas and so on. The important method to judge whether the image content has been tampered with is passive forgery detection method. The existing passive forgery detection methods own some drawbacks, such as low robustness, low time efficiency, depending on only one image attribute, inaccurately located forgery regions, which are the bump for applying the passive forgery detection methods in real world. In this project, for achieving the efficient, robust and accurate passive forgery detection method, the research effort is focused on studying of the image feature, the image local feature abased on the orthogonal polynomial transform, the adaptive feature matching based on the approximately nearest neighbor search, modeling of the pixel level semantic. Moreover, the project further explore how to restore the tampered image to what it was, the different types of forgery will be restored by establishing the relationship between the image local sensitive hashing with the changes of image content. In the face of more powerful image forging technology, the successful implementation of this project will further improve the accuracy of image authenticity determination, reinforce the existing image content security protection mechanism, and accelerate the digital forensics technology applied in the field of Internet, military, judicial areas and so on.

近年来,伪造图像已经成为网络、军事和司法取证等领域中备受关注的问题,图像内容篡改被动检测是判定图像内容是否真实的重要方法。现有被动检测方法存在鲁棒性不强、时间效率低、过于依赖单一图像属性、篡改区域定位不准确等问题,这限制了图像内容篡改被动检测被投入实际应用。本项目围绕图像特征学习、基于正交多项式变换图像局部特征描述、自适应近似最近邻特征匹配筛选、篡改检测中像素级语义建模等关键理论与方法,实现高效、鲁棒、定位准确的图像内容篡改被动检测。此外,项目还进一步研究图像内容篡改恢复问题,通过建立局部敏感哈希值与图像内容变化的关联机制,实现不同类型的图像内容篡改恢复。面对图像伪造技术的日臻成熟,本项目的成功实施将提升判定图像内容是否真实的准确性,加固现有图像内容安全保护机制,加速数字取证技术在网络、军事和司法等领域的实际应用。

项目摘要

图像内容篡改被动检测作为图像取证领域的一个重要分支,近年来受到国内外学者的广泛关注。现存的被动检测方法在一定程度上能够有效的判定图像内容的真实性,但存在鲁棒性不强、时间效率低、过于依赖单一图像属性、篡改区域定位不准确等问题。本项目围绕图像特征学习、基于正交多项式变换图像局部特征描述、自适应近似最近邻特征匹配筛选、篡改检测中像素级语义建模等关键理论与方法,实现高效、鲁棒、定位准确的图像内容篡改被动检测。此外,项目还进一步研究图像内容篡改恢复问题,通过建立局部敏感哈希值与图像内容变化的关联机制,实现不同类型的图像内容篡改恢复。通过本项目的研究有望提升判定图像内容是否真实的准确性,加固现有图像内容安全保护机制,加速数字取证技术在网络、军事和司法等领域的实际应用。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

硬件木马:关键问题研究进展及新动向

硬件木马:关键问题研究进展及新动向

DOI:
发表时间:2018
2

宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响

宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响

DOI:10.7606/j.issn.1000-7601.2022.03.25
发表时间:2022
3

内点最大化与冗余点控制的小型无人机遥感图像配准

内点最大化与冗余点控制的小型无人机遥感图像配准

DOI:10.11834/jrs.20209060
发表时间:2020
4

面向云工作流安全的任务调度方法

面向云工作流安全的任务调度方法

DOI:10.7544/issn1000-1239.2018.20170425
发表时间:2018
5

基于全模式全聚焦方法的裂纹超声成像定量检测

基于全模式全聚焦方法的裂纹超声成像定量检测

DOI:10.19650/j.cnki.cjsi.J2007019
发表时间:2021

相似国自然基金

1

大数据环境下批量语音内容认证及篡改恢复技术研究

批准号:61902085
批准年份:2019
负责人:钱清
学科分类:F0206
资助金额:28.00
项目类别:青年科学基金项目
2

基于哈希的图像篡改检测算法研究

批准号:61902102
批准年份:2019
负责人:严彩萍
学科分类:F0210
资助金额:26.00
项目类别:青年科学基金项目
3

数字图像篡改自恢复理论模型及方法研究

批准号:61902239
批准年份:2019
负责人:曹芳
学科分类:F0206
资助金额:28.00
项目类别:青年科学基金项目
4

基于深度特征学习的翻拍图像检测技术研究

批准号:61901349
批准年份:2019
负责人:朱楠
学科分类:F0116
资助金额:20.00
项目类别:青年科学基金项目