Studies on peptide self-assembly are significant to biomedical research areas, such as controlled drug and gene release, biosensing, tissue engineering, etc. However, there are still many technical challenges for peptide self-assembly. Among these challenges, limited intrinsic ultraviolet invisible fluorescence of peptides restricts the applicability of peptide self-assemblies as productive and efficient bioimaging probes. Motivated by the extensive work on green fluorescent protein (GFP), we combined concepts from peptide self-assembly and GFP molecular engineering to create simple dipeptide self-assembled nanoparticles that mimic the optical features of GFP-derived proteins. We also showed that these visible fluorescent dipeptide self-assembled nanoparticles can be used for targeted cellular imaging and real-time drug release monitoring. Based on our previous work, we plan to synthesize the peptide self-assembly nanosystems with controllable fluorescence properties. Specifically, we will build up a library of peptides with various amino acids sequence and introduce the organic solvents as reaction environments for peptide self-assembly. The experimental parameters including temperature, pressure and solvent polarity will be also optimized for visible even near-infrared fluorescence. Afterwards, the fluorescent peptide self-assembly nanosystem will be validated for in vivo esophageal cancer imaging at different tumor stages, including primary solid tumor, earlier carcinoma and metastasis, and tracking the delivery efficacy of drugs. Meanwhile, through discovering the relationship between the structure and optical properties of peptide self-assembly nanosystems, we will try to unveil the underlying principles of the structure induced fluorescence. This study will extend the category of peptide self-assembly nanosystems with optical properties to develop the biocompatible nanoplatform for detection, imaging and therapeutic applications.
多肽自组装研究对药物和基因的控制释放、生物传感、组织工程等领域有重要意义,然而多肽自组装技术仍面临很多挑战。譬如,由于多肽的自荧光集中于紫外不可见光范围,限制了其自组装体系在生物成像等领域的应用。申请人前期的研究工作表明,基于生物荧光蛋白的机理,通过有序的多肽自组装可以生成具有蓝色荧光的多肽纳米颗粒,并对癌细胞进行荧光成像诊断分析和实时监测药物的递送和释放。本项目拟在前期工作基础上尝试应用不同氨基酸序列的多肽,同时引入有机/水相混合溶剂体系,通过对氨基酸序列和自组装条件的优化,合成具有可控荧光的多肽自组装体系,并对食道癌进行体内检测成像和实时跟踪药物的靶向递送。同时探索多肽自组装体系的结构信息和光学性质的关系,阐明此类结构诱导荧光的机制,为设计新型集检测、成像和治疗于一体的生物功能材料奠定理论基础。
多肽自组装材料在微观结构上表现出了丰富的多样性,然而相对局限的物理化学特性,一定程度上限制了其在生物医学领域的应用。同时,针对我国的食道癌患病率和死亡率逐年增高,且化疗药物副作用较大等问题。本项目设计并构筑了具有可见自荧光的生物活性多肽组装体,同时探索了针对食道癌的生物大分子治疗方法。利用酪氨酸酶的选择性催化,我们利用酪氨酸酶对具有生物活性的WRWRWY多肽进行酶促氧化聚合,并进一步自组装形成具有可见荧光的多肽纳米颗粒。同时,我们设计并制备了一种具有自发绿色荧光和具有抗肿瘤活性的三肽组装体,其能够在细胞内酪氨酸酶的氧化下原位自组装,进而实现针对癌细胞的特异成像和有效杀伤。此外,我们还发展了针对食道癌细胞的新型miRNA胞内递送方法,能够实现快速高效的miRNA胞内递送并有效杀伤食道癌细胞。通过项目组成员的努力工作,项目执行期间以通讯作者(含共同通讯作者)发表9篇标注该项目的期刊论文,包括Advanced Functional Materials、Biomaterials、Chemistry of Materials等知名期刊。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
靶向C-CBL蛋白的荧光标记多肽化合物开发及其用于细胞自噬显微成像的研究
基于智能多肽自组装的激活式近红外荧光和给药纳米探针用于肿瘤靶向成像与治疗研究
功能性多肽类荧光探针用于肿瘤的标记与检测
细菌表面诱导多肽自组装用于细菌的检测及生长抑制