Based on the fact that the building industrialization and prefabricated concrete structure are highly encouraged in recent years, this project aims on enhancing the aseismic performance of prefabricated concrete structure by using novel energy dissipative joints through numerical simulation, and assisted with MTS and shaking table experiments. First, based on the dynamic characteristic of traditional prefabricated concrete structure and the construction technology of traditional joints, viscoelastic energy dissipative joints, as well as friction joints are proposed. Subsequently, numerical simulation and MTS pseudo-static test will be performed to generate nonlinear mechanical models of the energy dissipative joints. The control effectiveness of the proposed joints will be validated through simulation and shaking table tests. And then, detailed parameter analysis and energy consumption analysis will shed more light on the energy dissipative joints’ damping mechanisms, as well as the optimal energy consumption mechanisms and design parameters for different applications. Finally, the optimized joints will be fabricated, and the bearing capacity of the joints and some issue related to the applicability of the joints will be examined. Besides, the case when there was failure in some joints and false-safe mechanism will also be analyzed. Results from this project will pave a theoretical and experimental foundation for future applications of the energy dissipative joints in the prefabricated concrete structure field.
针对目前大力推动建筑产业化及装配式混凝土结构的发展趋势,本项目通过理论分析,结合MTS试验及振动台试验研究采用新型的装配式耗能节点以提高结构的抗震安全性。首先,项目将从传统装配式结构在地震激励下的动力响应特点出发,并针对典型装配节点不同的装配工艺,探寻切实可行的装配式粘弹性耗能及摩擦型耗能节点。其次,结合数值仿真与MTS拟静试验提出耗能节点的非线性力学模型,结合力学模型对安装有耗能节点的装配式混凝土结构进行数值仿真与振动台试验研究以验证耗能节点的减振能力;进而,详细的参数和耗能分析将揭示耗能节点在不同工作条件的减振机理、最优耗能模式及对应最优参数。最后,还将对优化后耗能节点的承载力及应用过程相关的适用性问题进行评价,同时研究耗能节点失效带来的影响并设计相应的失效保护机制。研究成果将为新型耗能节点在装配式混凝土结构中的应用提供必要的理论基础及试验支持。
针对目前大力推动建筑产业化及装配式混凝土结构的发展趋势,本项目通过理论分析,结合阻尼器力学性能试验及足尺梁柱十字节点试验,目的在于,通过研究采用新型的装配式耗能节点,提高结构的抗震安全性。首先,项目从传统装配式结构在地震激励下的动力响应特点出发,针对典型装配节点不同的装配工艺,设计适用于装配式节点两类阻尼器:低屈服点金属阻尼器和摩擦型阻尼器,进行拟静力滞回加载试验。进而,优选目标阻尼器,设计与之匹配的装配式混凝土结构梁柱耗能节点,进行足尺节点的拟静力滞回加载试验。推导计算公式与力学模型,为结构分析提供必要的理论依据,以及结构分析中参数化阻尼器模型提供可能性并确保参数化模型的准确性。建立精细有限元模型,并与试验结果进行比对,优化和修正有限元模型,在此基础上,进行装配式耗能节点结构耗能机制研究及参数影响分析,揭示两种类型阻尼器最优耗能模式、最优参数取值、阻尼器性能设计与不同参数的相关性等。结合数值仿真与拟静试验提出耗能节点的非线性力学模型,建立带耗能节点装配式整体结构,进行减震性、动力响应、屈服模式、适用性等研究,对优化后耗能节点的承载力及应用过程相关的适用性问题进行评价。研究成果将为新型耗能节点在装配式混凝土结构中的应用提供必要的理论基础及试验支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
玉米叶向值的全基因组关联分析
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
基于干砌填充墙摩擦耗能的钢筋混凝土框架结构减振研究
装配式钢管约束耗能连接节点及其框架结构抗震机理与失效控制
桁架式钢骨混凝土框架节点耗能机理及抗震性能研究
橡胶混凝土材料耗能特性及其在梁式桥防撞减振中的应用