Phase behavior of mesoscopic scale organic liquids confined in porous materials is significantly influenced by the pore size and interface interaction. The existing state, phase change temperature and enthalpy of pure and binary mixtures under different size and interface interaction are the key points of understanding the thermodynamic properties of the confined organic liquids. Ordered mesoporous silicates(SBA-15), periodic mesoporous organic silicas(PMOs), carbon-walled silicates(C/SBA-15) and controlled porous glasses (CPGs) with different pore sizes act as the media for adsorbing orgnanic liquids,thereby the gradient interface interactions can be formed between pore wall and the organic molecules in weak, moderate and strong strength. For pure organic liquids and the representative mixture, the melting and freezing temperatures and the enthalpies during the transitions will be measured confined in pores of 3-30nm at different pore fillingness and interaction modes by low temperature DSC method. Combined with XRD diffraciton patterns for the frozen pore liquids, the thickness of contact layer phase, crystlline structure of freezing layer may be deduced. The global phase diagram of pure liquids can be obtained in respect to different size and interface interactions. For binary organic liquids of 3nm to microns scale, phase diagram under confinement will be determined under different size and interface interactions. The evolution of the binary phase diagram of mesoscopic organic systems from the simple type in nanometers size to that of the bulk system will be studied. The research may help understanding the basic thermodynamic properties for low dimensional fluids and provides useful basic thermodynamics data for related research fields such as catalysis, nanotribology, nanomaterials fabrication, biomembranes.
多孔材料孔道内的介观尺度有机液体的相行为,受到尺寸及界面作用的显著影响。孔内液体的存在状态、相变温度及相变焓,随尺寸及孔壁作用的变化规律,是理解介观尺度有机液体热力学性质的关键。用系列孔径的纯硅基(SBA-15)、有机硅(PMOs)、碳质孔壁C/SBA-15有序介孔材料及可控孔径玻璃(CPGs)为吸附剂,使孔壁与有机分子之间形成弱、中等及强相互作用模式。以低温DSC量热法为基本手段,研究3-30nm有序介孔内单、双组分液体熔点、凝固点及相变焓随吸附量、孔径、孔壁组成的变化规律,结合XRD分析,推断接触层相厚度、可冻结液体晶型,确定各种界面作用下熔点、凝固点及其焓变与尺寸关系模型;研究常规完全互溶、低共熔物吸附于3nm-1微米孔道中的有机介观体系相行为,考察各种尺寸及界面作用下,介观二元相图演化至常规相图的规律。研究为理解低维液体性质,及催化、纳米摩擦学、纳米材料制备等研究提供热力学基础。
物质固-液、固-固相变温度、相变焓、相态等信息,是体系性质、结构的反映。研究纳米孔内流体相变行为,是了解介观体系体系性质的有效途径之一。课题以有机小分子(单、双组分卤代苯)、相变材料(多元醇、烷基铵盐、聚乙二醇)、正烷烃(n-C13~C17)为模型化合物,通过熔融、溶液方式吸附于SBA-15、碳壁SBA-15、KIT-6、可控孔径玻璃(CPG)、硅胶,孔径范围3.8-300 nm。通过低温差示扫描量热仪DSC、变温X-射线衍射仪,测量模型化合物熔点、凝固点及相变焓,及相变前后晶体结构。结果表明,纳米孔中单组份物质熔点/凝固点发生下降,其降低程度,与孔径倒数呈反比关系(如小分子及相变材料),符合经典的Gibbs-Thomson公式;部分正烷烃也出现与孔径倒数呈曲线关系,对应Gibbs-Thomson公式加校正项1/d2;相变温度同时受到尺寸、界面极性及孔道维度的影响。孔内单组份物质焓变在考察范围内,与孔径倒数呈反比关系,这种降低趋势主要归因孔内晶格缺陷。孔内物质过冷度,绝大部分情况随孔径减小而增大,小至一定程度(如烷基铵盐为约30 nm)基本不再改变。孔内单组份物质相态,在只有一种稳定相时(非多晶如相变材料),与常规体系相同;而多晶物质在纳米孔内,如正烷烃,则呈现复杂变化,升、降温过程常出现新旋转相,即RI、RII相,而纳米限域对旋转相起到稳定化作用。双组份体系在纳米孔内,在有机小分子(双组分卤代苯)情况,相图与常规体系类似,但相区移向低温区;在多晶体系情况下,如双组份正烷烃,相图出现较大变化。随孔径减小,正烷烃两元体系相变温度,相图型式、相界线等,都发生了明显变化,显示了对尺寸依赖性,以及孔结构对相图、晶相分布影响;尤其是出现新RII相区,已有稳定相区缩小,而已有RI相区扩大,这些结果都是首次报道。研究结果为介观尺度体系的基本热力学性质以及相平衡做了一些探讨,可望为催化、纳米摩擦学、纳米材料制备等研究提供热力学基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
特斯拉涡轮机运行性能研究综述
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
中国参与全球价值链的环境效应分析
双亲嵌段共聚物介观体系的结构和相行为研究
有机物种参与的介观聚集体的构筑、调控与相行为的转化
具有介观溶解现象的体系的热力学行为研究
介观体系瞬态量子输运的理论研究