The study of anti-friction and drag-resisting surface plays an important role in solving the crisis of resource, energy and environment faced by our economy and society, which has become a key research field for energy conservation and environmental protection. Most of the current anti-friction and drag-resisting surfaces can only function under specific working conditions. Fortunately, bionics has afforded new insights for the design of self-adaptive surface applicable to various situations. This proposal intends to observe the movement and frictional behavior of aquatic snakes living in several environments, in order to characterize their drug-resisting feature and underlying mechanism. The friction on the interface between the scale and solid surface resembling the wetted environment on ground as well as the friction between the scale and water as the case of water-born environment will be determined. The drag-resisting principle of the aquatic snake scale will be established and the strategy that multi-environment aquatic snake adopted to reduce drag on the scale surface will be revealed. The three-dimensional model mimicking surface morphology of aquatic snake scales and the physical model of friction under multiple conditions will be built to analyze the relationship between the surface structure of the snake scale and various frictional behaviors and to clarify the migration mechanism for the surface morphology of aquatic snake scale for several typical environments. Based on the above results, the bionic self-adaptive drag-resisting surface will be proposed and optimized, and the corresponding processing method will be also be established to fabricate the bionic self-adaptive drag-resisting surface.
摩擦减阻表面的研究在解决国民经济和社会发展所面临的资源、能源、环境问题中具有重要的战略地位,已成为节能环保领域的一个重要研究方向。当前大多数摩擦减阻表面仅适用于特定工况环境,而仿生学为多环境摩擦减阻自适应表面设计研究开辟了新的方向。本研究拟观测生活在多种环境中的水栖蛇运动特征和摩擦行为,探索多种环境下蛇鳞表面形态摩擦减阻特性及规律,测定地表润湿环境下的蛇鳞-固体表面和水环境下的蛇鳞-水流摩擦阻力,总结蛇鳞摩擦减阻规律,揭示多环境水栖蛇鳞片表面形态摩擦减阻策略,建立仿蛇鳞表面形态三维模型及其多环境条件下摩擦阻力物理模型,分析仿蛇鳞表面形貌结构与多种摩擦阻力相互作用关系,阐明仿水栖蛇鳞片表面形态多环境摩擦减阻功能迁移机制。基于上述机制,提出并优化仿生自适应减阻表面,建立仿生自适应减阻形态加工方法,实现仿生自适应减阻表面构建。
摩擦减阻表面的研究在解决国民经济和社会发展所面临的资源、能源、环境问题中具有重要的战略地位,已成为节能环保领域的一个重要研究方向。当前大多数摩擦减阻表面仅适用于特定工况环境,而仿生学为多环境摩擦减阻自适应表面设计研究开辟了新的方向。本研究拟观测生活在多种环境中的水栖蛇运动特征和摩擦行为,探索多种环境下蛇鳞表面形态摩擦减阻特性及规律,观测并总结蛇鳞表跨尺度形貌结构特征,分析多环境水栖蛇鳞片表面摩擦减阻策略,建立仿蛇鳞表面形态数学模型及其多环境条件下摩擦阻力物理模型,阐明仿蛇鳞连续型织构表面摩擦减阻机制。试验结果表明,蛇依靠腹部鳞片形貌结构与材料组分共同调控运动过程中的摩擦阻力,以保障其自身在多种环境下运动的适应性与可靠性。宏观下,蛇通过调整腹鳞与接触面的接触点数量控制摩擦接触阻力,以满足多种环境下运动。微观下,蛇鳞表面具有定向排布的跨尺度多级微纳结构,该结构主要由蛋白纤维组成,提高耐磨性能和摩擦异性,并根据接触环境粗糙程度和湿滑条件,改变腹部鳞表微纳结构与环境介质接触应力大小及弹性形变程度,进而调控鳞表摩擦阻力,防止身体侧滑和打滑现象发生。基于蛇鳞形貌,构建仿生连续型织构表面,探究空化效应和惯性效应润滑作用规律,揭示以空化效应为主导的减摩机理,进而满足多种环境工况下减阻功能,为仿生自适应减阻表面设计提供参考依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
拥堵路网交通流均衡分配模型
中国参与全球价值链的环境效应分析
基于多模态信息特征融合的犯罪预测算法研究
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
仿生射流表面减阻特性及减阻机理研究
弹性导热仿生功能表面构建原理及减阻机制
海洋航行体表面调控与仿生减阻机理
非光滑表面减粘降阻机理的仿生研究