Reconstruction of the sensory feedback function on prosthetic hand is a challenging topic in the area of research on intelligent prosthesis. The key difficulty is that the neural pathway used for sensory feedback cannot be directly built between the prosthesis and human sensory system. Thus, it also cannot realize the sensory transformation from the sensing signal in prosthesis to a modality-matched sensation. The in-depth study of this problem has broad range of prospective applications in the fields of rehabilitation medicine, intelligent robot and other vital interactive technologies. .In this proposal, using dexterous prosthetic hand as carrier, we will mainly focus on how to build the sensory feedback pathway and the encoding techniques for electrical stimulation. Concrete research content is designed which includes the following four studies: First study, research on how to induce the tactile sensation with mechanical or electrical stimulation and its mechanism; second study, how to induce and quantify multi-sensory modalities with mechanical/electrical stimulus encoding and the reconstruction of the feedback pathways; third study, the reconstruction of the sensory feedback function on prosthetic hand and evaluation of its effectiveness; fourth study, to implement integrated sensory system with the portable electrical stimulation, and complete the assessment of the bi-directional interaction between an amputee and the neural prosthesis. Based on the contents of this research project, it is expected to reveal a qualitative mechanism of the induction and the transmission for tactile sensation, determine a high selective stimulus encoding method that can evoke sensory-matched sensation corresponding to the sensing signal from the prosthesis, and improve the performance of the bi-directional interface used for prosthesis control and sensory feedback..This project aims to provide sufficient theoretical approaches and key technical enhancements for the intelligent prosthesis, and to support strategies and technologies for the new generation of the human-machine interaction.
假肢的感知功能重建一直是假肢研究领域的一个重大难题,其关键难点是无法直接建立假肢本体到(人体)神经系统的神经传入通道,也无法实现假肢传感反馈信息到神经系统感知的模式匹配传递。该问题的深入研究在康复医学、智能机器人等生机交互技术领域具有重要的应用前景。.本项目以仿人灵巧假肢手为载体,重点突破假肢传感信号的神经传入通道重建及电刺激模式编码技术。研究内容包括:1)机/电刺激模式下触觉感知的诱发与传导机理研究;2)多模式感知信息的机/电刺激编码与反馈通道重建;3)感知反馈下假肢感知的功能性重建与评价;4)传感反馈系统集成与双向交互性能评估。在上述研究基础上,重点探明机/电模式刺激下触觉感知的诱发与传导机制,建立机/电反馈刺激到神经系统感知的高选择性编码方法,实现智能假肢的感知反馈通道重建与交互控制性能增强。.本项目旨在为智能假肢技术的发展作理论和技术储备,为新一代的人机交互技术提供策略方法与技术。
神经(控制)假肢的感知功能重建一直是假肢研究领域的瓶颈性技术难题,其关键难点是无法直接建立假肢本体到(人体)神经系统的神经传入通道,很难实现假肢传感反馈信息到神经系统感知的模式匹配传递及被抓物体特征(尺寸、软硬度)的感知辨识。本项目面对以上关键难题,展开了具体的策略与方法研究。. 本项目以仿人灵巧假肢手为载体,围绕传感反馈编码、反馈通道重建、感知性能评估和闭环系统集成问题,开展以下研究:1)功能性传感反馈系统集成与电触觉接口;2)选择性触觉模式诱发与“指感”传入神经通道重建;3)电触觉反馈下假肢感知的功能重建及评价;4)闭环的假肢手反馈系统及其双向交互性能评估。在上述研究基础上,探究了机/电编码刺激下触觉感知的诱发-传导机制,建立了多模式触觉(轻触觉、压力觉与振动觉)选择性诱发的电触觉编码刺激模型,设计了假肢触觉与手指运动信息的电触觉接口反馈方案,实现了智能假肢的闭环系统集成与示范应用。. 项目研究成果可为功能性假肢的“感知功能再造”提供有效的非侵入式解决方案,为新一代的人机交互技术提供策略方法与技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
基于LASSO-SVMR模型城市生活需水量的预测
基于SSVEP 直接脑控机器人方向和速度研究
基于分形维数和支持向量机的串联电弧故障诊断方法
基于多频超声检测及电刺激感知反馈的假肢手双向人机接口研究
神经假肢手系统的感知反馈及柔顺控制基础研究
电刺激诱发肌梭感受器响应的肌电假肢手运动自主感知研究
视神经电刺激虚拟通道的产生与调控及其机理研究