The development of high-energy physics experiments requires the Large Hadron Collider (LHC) to provide more and more energy, which will dramatically increase the need for scintillation materials. Cost-effective scintillation glass will be the key material for the Super-LHC to be built in China. The problem of the light yield of the Ce3+ doped high density glasses is very difficult to be solved because there is a charge transfer quenching effect for the Ce3+ ions. On the other hand, there is still an intrinsic problem of low energy resolution for the scintillation glass. This project will replace Ce3+ with Sn2+, Cu+, etc.; and measure the scintillation properties of these active ions in low cost heavy metal compound glasses such as Pb and Bi; further develop a new type of high density scintillation glass. We will investigate the correlation between scintillation properties and the structures of glass and glass-ceramic, as well as the similarities and differences between the photo-luminescence and the radio-luminescence mechanisms; and clarify the correlation of the transport/transfer efficiency S facto of the e–h pair/energy to the luminescence center with the composition and structure of the scintillation glasses and glass ceramics. Further, the change rules of the energy resolution of the various active ions in glasses and glass ceramics will be measured, and then the principle and method of improving the energy resolution will be proposed. We will also investigate the distribution of the active ions in multicomponent glasses and multi-phase glass-ceramics to explore the scientific principles for controlling the adjacent environment of the active ions. It will establish a foundation for further improving the scintillation properties and practical application of scintillation glasses by accomplishing the project.
高能物理实验的发展需要大型强子对撞机提供的能量越来越高,需要的闪烁材料将急剧增加。高性价比的闪烁玻璃将成为我国将要建设的超大型强子对撞机的关键材料。Ce3+离子存在的电荷迁移淬灭效应很难解决高密度玻璃的低光学产额问题。另一方面,闪烁玻璃还存在着低能量分辨率的本征问题。本项目拟用Sn2+、Cu+等取代Ce3+,测试其在Pb、Bi等低成本重金属化合物玻璃中的闪烁性能,研制出新型的高密度的闪烁玻璃。发现闪烁性能与玻璃和微晶玻璃结构内在相关性以及光致发光与闪烁发光机理的异同,探讨电子-空穴对将能量传递给荧光发光中心的效率S因子与材料组成和结构的相关性。测试各种闪烁离子在玻璃和微晶玻璃中的能量分辨率的变化规律,提出增加能量分辨率的原理方法。研究闪烁发光离子在多组分玻璃和多相的微晶玻璃中的分布,探讨控制闪烁发光离子近邻环境的科学原理,为进一步提高玻璃和微晶玻璃闪烁体的性能并使其实用化奠定良好的基础。
本项目围绕着将闪烁玻璃中的Ce3+离子用其它发光离子和纳米微晶所取代这一课题,制备出了各种新颖的闪烁玻璃和微晶玻璃。为此,研制了Cu+掺杂SiO2-B2O3-La2O3玻璃, SnX (X=F, Cl)-P2O5的低熔点玻璃和研究它们的发光。其次,在玻璃中合成了各种卤化铯钙钛矿CsPbX3(X=Cl,Br,I)量子点,研究制备了Eu3+/X (X=Tb3+, Mn2+)/Al3+掺杂的高硅氧玻璃,重点探讨了Al离子对发光离子的影响。还研制了铝酸盐玻璃,初步探讨了该玻璃的辐照缺陷产生和其机理。同时,研究了Pr3+、Ho3+和Pr3+/Ho3+掺杂的氟化物玻璃制备及光谱性能。在光纤方面,拉制了以含有YVO4:Nd纳米晶的玻璃为芯,石英玻璃为包层的玻璃-微晶复合光纤,含6Li的闪烁光纤,纤芯为CsPbBr3量子点微晶玻璃的复合光纤等三种光纤。在闪烁机理方面,探讨了闪烁性能与玻璃组成和结构的关系,特别是就重点关注了如何提高玻璃陶瓷中的钙钛矿量子点的闪烁发光性能这一关键问题。通过该项目,取得了5项新颖的成果。开发出了高效、超短荧光寿命的等离子体增强的新型钙钛矿闪烁量子点玻璃和闪烁微晶玻璃;开发出了新型氯氧化物超低熔点、自发光玻璃;开发出了铜离子掺杂的铝钙二元透明长余辉玻璃;开发出了热压制备高透明、高力学强度、高发光效率的透明微晶玻璃的工艺方法;在玻璃和玻璃陶瓷的闪烁机理方面,在实验的基础上提出了可指导闪烁玻璃和玻璃陶瓷开发的玻璃中的闪烁光子数目模型公式。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
新型白光LED用玻璃陶瓷制备与发光性能研究
玻璃组成与结构对铌酸钾钠玻璃陶瓷界面极化和储能性能的影响
稀土/过渡族离子共掺的新型发光玻璃陶瓷制备、显微结构调控与性能研究
合金基体上玻璃陶瓷复合涂层的原位制备及性能研究