The research of claw-free graphs has been one of the topics of many graph theory reseachers interested in. Reseach in this field is multitudinous and there are many classical results. In this project, we systematically study some problems about the Hamiltonicity and 2-factor of claw-free graphs , including the existence of Hamiltonian cycle of claw-free graphs and the existence of 2-factors of claw-free graphs whose edges in small cycle. These problems will be improved in reseach methods. Our results are expected to strengthen the known results.
无爪图的研究一直是许多图论研究者感兴趣的课题之一,这方面研究众多,出现了许多经典的结论。本项目主要研究图论中无爪图的哈密尔顿问题和无爪图的2-因子问题。包括连通,N^m-局部连通无爪图哈密尔顿圈的存在问题和边在小圈上的无爪图的2-因子存在问题。这些问题在研究方法上将有所改进。 我们的结论将有望加强和推广已知结果。
本项目主要研究了连通,局部连通无爪图的哈密尔问题及2-因子存在问题,以及边在小圈上的2-因子的存在性得到了以下结论:.1.设G是一个连通无爪图使得.(1.)每个度数至少为3的局部不连通顶点在一个长度至少为4的导出圈C上,且存在某个非负整数s,使得C有至多s个非单边和至少s-3个局部连通的顶点;. (2.)每个度数为2的局部不连通的顶点在一个导出圈C上, 且存在某个非负整数s,使得C含有至多s个非单边和至少s-2个局部连通的顶点使得G[V(C)∩V_2(G)]是路或圈,. 那么G是哈密尔顿的。.2..设G是一个连通无爪图使得. (3.)每个度数至少为3的局部不连通顶点在一个长度至少为4的导出圈C上,且存在某个非负整数s,使得C有至多s个非单边和至少s-5个局部连通的顶点;. (4.)每个度数为2的局部不连通的顶点在一个导出圈C上, 且存在某个非负整数s,使得C含有至多s个非单边和至少s-3个局部连通的顶点使得G[V(C)∩V_2(G)]是路或圈,. 那么G有一个2-因子。.3.每个5-圈连通无爪图有一个2-因子.
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling
An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function
Baicalin provides neuroprotection in traumatic brain injury mice model through Akt/Nrf2 pathway
无爪图及其扩展图的因子的研究
应用群论研究无平方因子阶2-弧传递图的对称性
超图的2-可染色性和图的控制集问题
图的哈密尔顿性的谱刻画