The bionic artificial skin with human skin sensory function should have multi-sensation at the development request of Bionic Electronics. However, the present artificial skins are difficult to perform the tactile and pressure function simultaneously due to the limitation of measurement range and measurement precision of tactile and pressure sensor. According to this problem, this project presents a tactile-pressure bionic artificial skin based on 2D/3D porous graphene, and a multi-scale stress measurement method of tactile-pressure bionic artificial skin. The stress-sensitivity synergism between 2D/3D porous graphene and flexible polymer will be studied to obtain desirable flexible composite material with an optical sensitivity and linearity. The bionic unit of the bionic tactile-pressure artificial skin based on 2D/3D porous graphene will be built according to quantitative study of the artificial skin’s bionic parameters to mimic human skin. The multi-scale stress measurement mathematical model of the tactile-pressure artificial skin will be established according to the experiment. According to this project, the internal mechanical characteristic relevance of the composite process of two flexible materials will be clarified, the quantization law of stress measurement at a multiple scales will be revealed, and the theoretical basis and technical support for bionic artificial skin in materials preparation, unit building and measurement method establishing also will be provided. The research results can be applied in rehabilitation robot and prosthetic robot hands, and has an important theoretical meaningful and application value.
仿生电子学的发展要求仿生电子皮肤具有人体皮肤多种感觉功能,而目前触觉和压觉传感器在测量范围和测量精度上的局限性严重制约了仿生电子皮肤触觉和压觉功能的同时实现。针对此问题,本项目拟提出一种基于2D/3D多孔石墨烯的触-压觉仿生电子皮肤及其多尺度应力测量方法。研究2D/3D多孔石墨烯和柔性聚合物的力敏协同效应,以获取具有最佳应变灵敏度和线性度的柔性复合材料;定量研究仿生电子皮肤模仿人体皮肤触-压觉的仿生学参量,构建基于2D多孔石墨烯薄膜和3D多孔石墨烯泡沫的触-压觉仿生电子皮肤仿生单元;建立触-压觉仿生电子皮肤多尺度应力响应模型和测量方法。通过本项目的研究,可阐明两种柔性材料复合过程中力学特性的内在关联并揭示多尺度下应力测量的量化规律,为仿生电子皮肤在材料制备、单元构建和测量方法方面提供理论依据和技术支撑。研究成果可用于康复机器人和假肢机器手实现触-压觉功能,具有重要的理论意义和实用价值。
仿生电子学的发展要求仿生电子皮肤具有人体皮肤多种感觉功能,而目前触觉和压觉传感器在测量范围和测量精度上的局限性严重制约了仿生电子皮肤触觉和压觉功能的同时实现。针对该问题,本项目提出了一种基于2D/3D多孔石墨烯的触-压觉仿生电子皮肤及其多尺度应力测量方法。研究了2D石墨烯薄膜的转移、表征和测试,将利用CVD法制备的2D石墨烯薄膜成功转移至PET柔性衬底上,在尺寸为10mm×10mm×50μm时压阻灵敏度可达10.27Ω/kPa。研究了3D石墨烯泡沫的制备、表征和测试,基于模板驱动法和双重还原法成功制备3D石墨烯泡沫,弹性模量可达5kPa,电导率可达0.4S∙m^(-1),压力灵敏度可达0.36kPa^(-1)。研究了人体皮肤触压觉仿生学原理,从人体皮肤的结构、触压觉单元、对压力刺激的感知过程等方面研究了仿人手皮肤的触压觉传感器需要具备的物理参数。设计并制备了具有仿生结构的柔性触压觉电子皮肤传感器单元原理样机(尺寸10mm×10mm×6mm),可同时实现触觉和压觉功能,触觉测量范围范围0~2N,灵敏度为472.2Ω/kPa,分辨率可达0.01N,响应时间约为40ms;压觉测量范围2~40N,灵敏度为5.05kΩ/kPa,分辨率可达0.5N,响应时间约为30ms,可实现跨越4个尺度的多尺度测量。本项目研究的触压觉柔性电子皮肤可用于机器人、可穿戴设备和医疗电子等领域,具有广阔的应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
高压工况对天然气滤芯性能影响的实验研究
长链烯酮的组合特征及其对盐度和母源种属指示意义的研究进展
粘土矿物参与微生物利用木质素形成矿物-菌体残留物的结构特征研究
不同覆压条件下储层物性变化特征及水驱油实验研究
凝胶类仿生触-压觉敏感器件感知机理研究
仿生石墨烯纳米孔道中基因传递的多尺度模拟研究
基于石墨烯复合材料电子皮肤模态干涉多维度抑制研究
2D/3D视觉信息融合仿生SLAM关键问题研究