Rigid polyurethane foams (RPUFs) were widely used in advanced weapons equipment as structure and bearing block. However, the RPUFs would release moisture gradually after dehumidified by nitrogen blowing, causing the deterioration of some other key materials. But at this moment, the moisture releasing mechanism hasn’t been understood deeply because of the mutual interference of chemical releasing factor and physical releasing factor. In this project, the moisture releasing mechanism of RPUFs in high N2 and low moisture environment was researched based on the 18O isotopic tracing method, which could reject the disturb of other gases and separate the chemical and physical moisture releasing factor. A model RPUF, made of general 16O and adsorbing or embedding H218O, will be prepared firstly. Then the content and relative content of H216O and H218O in the moisture during the long term storage in high N2 and low moisture environment will be analyzed by MS. The H216O and H218O could only come from degradation of base or physical releasing processes (such as desorption), respectively. Combining with the chemical structure analysis of the RPUF base, the aging and degradation regularity as well as their contribution on moisture were analyzed. Combining with the numerical simulation, the diffusion process of H2O was studied. This research could help to deeply understand the moisture releasing mechanism of RPUFs and provide the theoretical basis of choose of effective dehumidify methods and RPUFs modification.
硬质聚氨酯泡沫(RPUF)作为支承结构材料广泛应用于先进武器装备中,然而通氮除湿处理后RPUF会缓慢释湿,使得其他关键元器件腐蚀与劣化,目前其释湿机制并未得到深入认识,化学与物理释湿的相互干扰是重要的制约。本项目拟基于氧-18同位素示踪,排除化学、物理释湿的相互干扰,研究其释湿机制:拟制备氧-16基体,吸附或包埋氧-18水的模型RPUF,通过质谱研究其高氮低湿环境贮存过程释放的氧-16水(仅会来自基体的老化降解)与氧-18水(仅会来自解吸附等物理释湿过程)的含量及相对比例,结合化学结构表征,分析基体的老化降解规律及其对外界湿度的影响(化学释湿),结合数值模拟研究RPUF中水分子的扩散动力学(物理释湿规律),综合化学、物理释湿规律,阐明RPUF在高氮低湿环境的释湿机制。通过本项目的研究,一方面可以深化对RPUF释湿过程的认识,另一方面也为采取有效除水措施以及RPUF改性提供理论依据。
硬质聚氨酯泡沫(RPUF)作为支承结构材料广泛应用于先进武器装备中,然而通氮除湿处理后RPUF会缓慢释湿,使得其他关键元器件腐蚀与劣化,目前其释湿机制并未得到深入认识,化学与物理释湿的相互干扰是重要的制约。在项目研究过程中,我们设计加工了用于研究模型RPUF释湿机制的模拟研究系统,制备了18O标记的模型 RPUF并模拟了RPUF的贮存流程,随后开展了模型 RPUF的释湿试验,但是由于H218O、H216O等在质谱管路中吸附比较严重,难以通过质谱获得H218O、H216O准确含量及相对比例,有鉴于此,为了获得释湿过程中H218O、H216O准确含量及相对比例的信息,我们转而采用激光吸收光谱的方法,基于H218O、H216O吸收峰的差异,采用可调谐半导体激光吸收光谱(TDLAS)检测技术对水/重氧水气体浓度进行检测,建立了释湿及在线监测系统,并获得了模型 RPUF在高氮低湿环境中的释湿规律,由释湿试验结果以及老化前后样品的红外表征结果可知,对RPUF而言,老化效应并不明显,同时新制备的样品含水量很少,RPUF释放的水分主要源于在贮存过程中从环境吸附的水分,物理释湿是RPUF释湿过程的主导,RPUF释放到环境中的湿度绝大部分来源于早期的物理吸附水分的解吸附,且RPUF早期的解吸附十分地迅速(可在1h内完成),这表明,做好产品加工过程的水汽防护,可以有效地降低RPUF对环境中水分的吸附,从而有效降低在RPUF应用过程中的水分释放,减弱对其它材料的影响。同时,在本项目实施过程中,我们设计制备了不同聚合物-二氧化硅杂化壁相变纳米胶囊(NePCMs),并将部分相变纳米胶囊掺杂到RPUF中,获得了韧性较好的热调节RPUF。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
农超对接模式中利益分配问题研究
基于细粒度词表示的命名实体识别研究
天津市农民工职业性肌肉骨骼疾患的患病及影响因素分析
黑河上游森林生态系统植物水分来源
氮氧同位素示踪灰霾期硝酸盐的生成机制
大型浅水湖泊水土界面反硝化作用及其环境效应的氮氧同位素示踪
地下水硝酸盐反硝化过程的氮氧同位素示踪研究
西沙永兴岛大气沉降硝酸盐来源的氮氧同位素示踪研究