Being recognized as one of the most important low carbon and renewable energy sources, offshore wind power is the focus of today's global energy strategy. Offshore wind power becomes the major trend of wind energy due to its advantages compared with onshore wind power, such as abound resource and high energy efficiency. However the changing and harsh operational environment makes the degradation process of offshore wind turbine difficult to be characterized and the failure modes very complex. Further, the available maintenance time window is short and uncertain. These factors greatly increase the operational risk and maintenance cost for offshore wind farm. The studies of the degradation mechanism and maintenance strategy of complex system in dynamic environment are essential scientific issues to decrease the management and operational risk and cost of offshore wind power. . . This project conducts research on degradation modeling and multi-failure mechanisms analysis under dynamic offshore environments from the following aspects: (1)It explores the degradation process of wind turbine under the dynamic and harsh operational environment and explains clearly the mathematical model between degradation and environment.(2)It constructs a multi-level and integrated dynamic maintenance strategy, which considers the dynamic offshore environment and online monitoring information of system failure. Hence the success of implementation of maintenance task during limited maintenance time window is ensured in theory. (3) The research on the dynamic multi-objective maintenance strategy points out a methodology for decreasing the operational risk and maintenance cost of offshore wind power.
风电作为重要的低碳、可再生能源是当今全球能源战略的重点。海上风电由于其资源丰富、能量效益高等优势已经成为当前风电发展的主要趋势。多变和恶劣的运行环境致使海上风力发电机退化规律刻画困难、失效模式复杂多变、维修窗口时间短暂而不确定,其大大提高了海上风电的运行风险和运维成本。面向海上风电场研究动态环境下复杂系统退化机制和维修策略是降低海上风电场运行风险和运维成本的基础性科学问题。. 本项目研究动态环境下风机系统的退化与失效机制,探索了多变和恶劣环境条件下风机系统退化规律,阐明了海上环境因素与海上风机系统退化过程的数学关系;动态环境下风机系统的多层次维修策略综合考虑了海上动态环境和风机系统失效模式的实时监控信息,为提升短暂、不确定维修时间窗口条件下的海上风机维修成功性提供了科学化保障;随机动态多目标维修策略优化研究为持续降低海上风电运行风险和运维成本提供了有效方法支撑。
本项目以动态环境下运行的海上风电机为研究对象,旨在通过对动态环境下复杂系统的随机退化过程和多失效机制的研究,阐明不确定条件下系统退化与失效规律,进一步研究了组件间相依退化的机制以及基于相依退化的情况下相依信息对剩余寿命预测和维修的作用;面向维修任务的成功性构建基于动态环境下复杂系统退化与失效的多层次综合维修策略模型,设计启发式优化算法,解决随机多目标动态维修策略优化问题。研究库存策略与维修决策的双重作用机制,构建在动态环境下优化维修策略与库存协同管理的多目标决策模型,并设计启发式算法求得动态不确定性因素下的最优解,提出了一种结合二等分搜索和邻域探索的启发式算法来解决非线性混合整数优化问题。从而为以“系统的系统”为构架的风电场的运维问题提供了理论支撑,为风电场的并网论证提供了一部分最基本的理论基础;对类似构架的高铁、航空等大型系统的实践具有指导和参考意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
涡度相关技术及其在陆地生态系统通量研究中的应用
论大数据环境对情报学发展的影响
硬件木马:关键问题研究进展及新动向
拥堵路网交通流均衡分配模型
基于大样本的海上复杂环境下弱小目标检测研究
随机环境下系统的可靠性分析与维修策略研究
大型海上风电场集电系统优化模型与算法研究
复杂动态执行环境下HMS系统的重构机制与调度理论研究