多Agent系统中强化学习的研究

基本信息
批准号:69905001
项目类别:青年科学基金项目
资助金额:13.00
负责人:李红兵
学科分类:
依托单位:南京大学
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:陈世福,陆庆文,李宁,谢琪,王立春,周志华,郭磊,邵栋,葛翔
关键词:
多Agent系统强化学习机器学习
结项摘要

As the growth of the agent technology, its application scope is extended continuously. Now it has some successful examples in the fields of industry, business, medicine and entertainment. Following are the problems existing in the current research of Multi-Agent systems. First, how the agents in multi-agent systems study and adapt to the dynamic environment when they only have limited knowledge. Second, how agents in MAS cooperate and negotiate to accomplish tasks effectively. Therefore, the learning ability, adaptive ability and cooperative ability are the keys of the MAS research. As a special frame of machine learning, reinforcement learning can learn from environment by interacting with it even knows little about it. This project does an in-depth research on some theories and key technologies of reinforcement learning in MAS. It accomplishes the prospective goals and obtains remarkable achievement on the key technologies. The innovations of this project are that it gives a reinforcement learning arithmetic based on MAS, an adaptive negotiation model of MAS, a reinforcement learning arithmetic based on BP neural network, a function evaluating arithmetic of reinforcement learning, a learning frame of MAS and a method quickening convergence of reinforcement learning. Since the environment of emulate robots World Cup football match ----Robocup is dynamic, real-time, oppositional and uncertain, it is a challenging multi-agent environment. We study this environment and use our achievements into it, which is proved effective. These achievements can be used in fields like intelligent control, intelligent robots and so on, and will enhance the intelligent behavior ability of the intelligent systems.We have published more than 10 papers on the core journals and academic conferences, some of which have been admitted by EI. 5 PH.ds and 5 Masters participate this project. And the achievements have been used in RoboCup software environment.

研究多Agent系统中强化学习的有关理论和技术,将研制一个强化学习模型和提高强化学习樟菜俣鹊姆椒ǎ约昂凸槟裳啊⑸窬绾鸵糯惴ㄏ嘟岷系挠泄丶际酰⒐乖煲桓龆郃gent强化学习系统。本项目的研究成果可应用到智能控制、智能机器人、个人数字助手和Internet上的智能信息检索等应用领域,能大大提高智能系统的智能行为能力。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于分形L系统的水稻根系建模方法研究

基于分形L系统的水稻根系建模方法研究

DOI:10.13836/j.jjau.2020047
发表时间:2020
2

基于SSVEP 直接脑控机器人方向和速度研究

基于SSVEP 直接脑控机器人方向和速度研究

DOI:10.16383/j.aas.2016.c150880
发表时间:2016
3

拥堵路网交通流均衡分配模型

拥堵路网交通流均衡分配模型

DOI:10.11918/j.issn.0367-6234.201804030
发表时间:2019
4

基于多模态信息特征融合的犯罪预测算法研究

基于多模态信息特征融合的犯罪预测算法研究

DOI:
发表时间:2018
5

卫生系统韧性研究概况及其展望

卫生系统韧性研究概况及其展望

DOI:10.16506/j.1009-6639.2018.11.016
发表时间:2018

相似国自然基金

1

多Agent(主动行为者)系统中学习和合作机制的研究

批准号:69673010
批准年份:1996
负责人:邢汉承
学科分类:F06
资助金额:10.00
项目类别:面上项目
2

基于多智能体强化学习的多机器人系统研究

批准号:60905054
批准年份:2009
负责人:段勇
学科分类:F0309
资助金额:19.00
项目类别:青年科学基金项目
3

面向网络协作学习的多Agent自适应决策模型研究

批准号:61807008
批准年份:2018
负责人:周一峰
学科分类:F0701
资助金额:20.00
项目类别:青年科学基金项目
4

基于多梯度递推方法的强化学习多智能体系统跟踪控制问题研究

批准号:61903092
批准年份:2019
负责人:白伟伟
学科分类:F0301
资助金额:26.00
项目类别:青年科学基金项目