交错代数上slice正则函数的若干几何函数论问题研究

基本信息
批准号:11801125
项目类别:青年科学基金项目
资助金额:24.00
负责人:徐正华
学科分类:
依托单位:合肥工业大学
批准年份:2018
结题年份:2021
起止时间:2019-01-01 - 2021-12-31
项目状态: 已结题
项目参与者:陈琳,刘源,王翟,陈嘉炜
关键词:
BlochLandau定理Bernstein不等式逆紧映射Slice正则函数星形函数
结项摘要

The slice regular function over quaternions is the extension of complex analysis in the non-commutative algebras, and is one of the hot spots in the study of hypercomplex analysis in the last decade. Nowdays, slice regular functions have been widely used in the quaternionic theories of operators, functional analysis and Schur analysis. However, there are many gaps in the corressponding geometric function theory. Therefore, this project will study the geometric function theory of slice regular functions over alternative algebras (e.g., quaternions, octonions) in which we mainly explore the coefficient estimate (e.g., Bieberbach conjecture, Fekete-Szegö inequality), proper mapping, Lu Qikeng problem, Bloch-Landau theorem, growth and distortion theorems. Specially, we hope to overcome the non-associativity and then extend the non-commutative technique of processing quaternionic slice starlike functions and convex functions to the octonionic setting. At the same time, this project will establish the generalized form of Bernstein inequality for slice regular polynomials and give its applications in approximation theory. Finally, we shall discuss whether the classical Gauss-Lucas theorem and Turan inequality are valid for slice regular polynomials. The study of the above problems would help to reveal the intrinsic relations and fundamental differences between holomorphic functions and slice regular functions.

四元数slice正则函数是复分析在非交换代数上的推广,是近十年超复分析的研究热点之一。slice正则函数在四元数算子理论、泛函分析、Schur分析中取得了极为广泛的应用,然其几何函数论方面还有许多空白。因此本项目将研究交错代数(如四元数、八元数)上的slice正则函数的几何函数论,重点探究其系数估计(如Bieberbach猜测、Fekete-Szegö不等式)、逆紧映射、陆启铿问题、Bloch-Landau定理、增长和偏差定理。其中,希望克服非结合性,将我们处理四元数slice星形函数、凸函数的非交换技巧推广到八元数上。同时,本项目将研究slice正则多项式的Bernstein不等式的推广形式,并给出其在逼近论中的应用;探讨经典的Gauss-Lucas定理、Turan不等式对于slice正则多项式是否成立。上述问题的研究将有助于揭示全纯函数与slice正则函数的内在联系和根本区别。

项目摘要

多复变函数论是现代数学的主流方向之一,几何函数论是其重要的组成部分。切片正则函数理论是复分析在非交换代数上的高维推广,在近十五年里得到了充分的发展,而且该理论可以广泛应用于四元数算子理论、逼近论、twistor几何等诸多领域。本项目以切片正则函数中几何函数论为出发点,主要研究了逆紧映射、Bohr半径及推广形式、Bernstein不等式的L^p形式、陆启铿问题、不确定性原理的算子形式。在项目的资助下,共发表学术论文8篇,如Proceedings of the Royal Society of Edinburgh、Annali di Matematica Pura ed Applicata、Annales Fennici Mathematici、Complex Analysis and Operator Theory、中国科学:数学。这些问题的研究,不但丰富了复分析和非交换代数的基本理论,而且促进了学科间的交叉发展。在项目组成员的共同努力下,圆满完成了项目中的预期目标。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

拥堵路网交通流均衡分配模型

拥堵路网交通流均衡分配模型

DOI:10.11918/j.issn.0367-6234.201804030
发表时间:2019
2

Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究

Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究

DOI:
发表时间:2020
3

Strong inequalities for the iterated Boolean sums of Bernstein operators

Strong inequalities for the iterated Boolean sums of Bernstein operators

DOI:http://dx.doi.org/10.24193/subbmath.2019.3.01
发表时间:2019
4

分数阶微分方程奇异系统边值问题正解的存在性

分数阶微分方程奇异系统边值问题正解的存在性

DOI:10.13718/j.cnki.xdzk.2019.04.015
发表时间:2019
5

前件变量未知的T-S模糊系统输出反馈控制

前件变量未知的T-S模糊系统输出反馈控制

DOI:10.13195/j.kzyjc.2018.0134
发表时间:2019

徐正华的其他基金

相似国自然基金

1

多复变几何函数论和函数空间的若干问题研究

批准号:11261022
批准年份:2012
负责人:徐庆华
学科分类:A0202
资助金额:45.00
项目类别:地区科学基金项目
2

复流形上的几何与函数论

批准号:11171277
批准年份:2011
负责人:邱春晖
学科分类:A0202
资助金额:52.00
项目类别:面上项目
3

一些几何结构上的函数论

批准号:11171298
批准年份:2011
负责人:王伟
学科分类:A0202
资助金额:48.00
项目类别:面上项目
4

几何函数论中的极值问题研究

批准号:19271056
批准年份:1992
负责人:吴卓人
学科分类:A0201
资助金额:2.40
项目类别:面上项目