The parallel mechanism with low mobility has broad prospects in high-precision applications such as motion simulation, precise positioning and measurement. However, when operating under high speed, high acceleration or heavy loading conditions, issues such as sharp increased vibration and unsecured accuracy will easily occur. In order to solve this problem, this project intends to develop the rigid-flexible coupled dynamic model and trajectory tracking control algorithm for the parallel mechanism with low mobility, utilizing the U-K theory which has the advantages of giving explicit expression of ideal and unideal constraining forces or torques. Firstly, considering the flexibility of all links and joints, the U-K theory and flexible multi-body system dynamic theory are applied to establish a complete and analytical rigid-flexible coupled dynamic model, on the basis of which, the controllability and observability of the flexible parts are analyzed. With the consideration of the rigid-flexible coupled relationship and the driving torque saturation, the trajectory tracking control problem is transformed into the constraining following control problem, and the control algorithm based on the U-K theory is designed to realize the trajectory tracking control of the flexible parallel mechanism under the condition of model uncertainty and torque saturation. Finally, the algorithms validation and model correction will be carried out through the test prototype. The research findings will provide new theoretical and technical methodology support for analysis and control of parallel type electro-mechanical equipment with low mobility.
少自由度并联机构在运动模拟、精密定位及测量等高精度应用场合具有广阔的前景,但其在高速、高加速或重载条件下运行时容易出现系统振动明显加剧,精度无法保证等问题。针对该问题,本项目拟利用U-K理论可对理想约束力与非理想约束力解析表达的优势,开展少自由度并联机构刚柔耦合动力学建模及轨迹跟踪控制的算法研究。首先,考虑各杆件与关节柔性,采用U-K理论及柔性多体系统动力学理论,建立完整解析的刚柔耦合动力学模型;在此基础上,分析柔性环节的可控性与可观性,考虑刚柔耦合运动关系与驱动力矩饱和因素将轨迹跟踪控制问题转化为约束跟踪控制问题,并基于U-K理论开展控制算法设计,实现在模型不确定与驱动力矩饱和条件下的柔性并联机构轨迹跟踪控制,最后以实验样机进行算法验证及模型修正。研究成果将为少自由度并联构型机电装备的分析与控制提供新的理论与方法支撑。
近年来,以并联机构为主机构的并联机器人获得了广泛的应用。然而,由于并联机器人由一系列杆件与关节组成,其动力学模型呈现出非线性强耦合特性,且在高速、高加速或大负载运行条件下,机器人的杆件与关节呈现出较大的柔性;同时,由于未建模项与外界扰动问题以及电机输入饱和问题的存在,开展并联机构的高速高精度轨迹跟踪控制受到了广泛关注。本项目重点开展了并联机器人、具有封闭结构的双臂机器人及串联机器人的动力学建模、振动抑制以及轨迹跟踪控制算法研究,主要包括:(1)考虑绳索柔性,基于Newton-Euler方程,建立了绳索驱动并联机器人一般形式的刚柔耦合动力学方程;以此为基础,针对柔性关节双臂机器人的动力学建模问题,分别基于经典的递推牛顿-欧拉动力学建模方法与子系统形式的牛顿-欧拉方法,建立了七自由度柔性关节双臂机器人协同搬运的动力学模型,并且将两种仿真模型进行对比,证明了子系统形式的牛顿-欧拉方法的正确性。(2)针对绳索驱动并联机器人的残余振动抑制问题,考虑到机器人各阶频率随位置改变的特点,将多模态输入整形与粒子群优化及控制算法相结合,建立以残余振动为优化目标,以多模态输入整形器参数为优化变量的优化模型,并利用粒子群优化对控制模型进行离线优化。(3)在考虑输入饱和与扰动的并联机器人轨迹跟踪控制方面,提出基于快速非奇异终端滑模与UDE方法相结合的有限时间轨迹跟踪控制算法,并提出了预设性能非对称有限时间控制方法、递推滑模面及自适应扰动观测器,同时提出了一种新的分数阶滑模面及自适应超螺旋方法。项目执行期间,共发表论文7篇,其中SCI论文6篇,EI论文2篇,申请国家发明专利2项,出版专著1部,培养硕士研究生5名。研究成果将为面向高速、高加速及大负载应用的高精度并联构型装备研制提供重要的理论指导与技术基础,进而提高我国机电装备的自主创新水平。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
基于分形L系统的水稻根系建模方法研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
电液伺服并联六自由度机构刚柔耦合建模与控制研究
基于U-K方法的多自由度串联/冗余驱动并联多刚体机构模糊动力学建模与最优鲁棒控制基础研究
少自由度并联机构运动等效机构的基础理论研究
含3个刚柔混合支链的6自由度并联起重机器人的机构学理论及吊运轨迹控制研究