With a specific capacity 10 times higher than that of graphite (4200 vs. 372 mAh/g), silicon is one of the most promising anode materials for lithium-ion batteries (LIBs), which perfectly meet the nation’s requirement on the specific energy density for electric vehicles (300-350 Wh/kg). However, practical application of silicon is retarded owing to its severe volume variation (up to 300-400%) during charge/discharge, which not only deteriorate the integrity of electrode structure but also lead to fast capacity decay. Moreover, owing to the fact that the electrodes with high areal capacities are indispensable components for building batteries with high energy densities, stable cycling of silicon anodes with high areal capacities is even more challenging. Herein, we propose “the hard/soft plastic/elastomer effect” to fabricate silicon anodes with high areal capacities for LIBs, i.e., building 3D network composite binders via in-situ polymerization with the combination of elastomers and plastics. In this effect, “soft” refers to the flexibility and elasticity of the composite binder, which buffer the volume variation of silicon anodes, while “hard” refers to the stiffness and plasticity of the binder system, which ensure the integrity of the electrodes during cycling. Based on “the hard/soft plastic/elastomer effect”, we believe in exploiting the mechanism of capacity decay for silicon anodes and achieving long-term cycling stability for high-areal-capacity LIBs.
由于拥有10倍于石墨的理论容量(4200 vs. 372 mAh/g),硅作为锂离子电池的理想负极材料,可以满足国家对电动汽车动力电池比能量密度的需求。然而,硅在循环过程中高达300-400%的体积变化,严重破坏了电池的电极结构及循环稳定性,而电极的高面积容量(3.0-3.5 mAh/cm2),使得硅负极面临进一步的挑战。基于此,本项目提出了“软硬弹塑性效应”,指导构建三维网络结构复合粘结剂,用于高面积容量锂离子电池硅负极。在“软硬弹塑性效应”中,“软”表示复合粘结剂具有一定的柔性和弹性,可以缓解硅材料的体积膨胀问题;“硬”表示复合粘结剂具有一定的刚度和塑性,能够保证硅电极在循环过程中的结构完整性。基于“软硬弹塑性效应”,本项目期望通过三维网络结构复合粘结剂的构建,结合微观尺度与宏观尺度表征手段,探索硅基负极循环过程中的失效机理,获得高面积容量硅电极的长循环稳定性。
硅作为锂离子电池的理想负极材料,拥有10倍于石墨的理论容量(4200vs.372 mAh/g),可以有效满足国家对动力电池高比能量密度的需求。然而,由于在循环过程中高达300-400%的体积变化,严重破坏了电池的电极结构,导致循环稳定性的下降。此外,电池的高比能量密度往往伴随着电极的高面积容量,达到甚至超过商业化的3.0-3.5mAh/cm2,使得硅负极的循环稳定性面临进一步的挑战。本项目本项目提出“软硬弹塑性效应”,构建三维网络结构复合粘结剂,结合微观尺度与宏观尺度表征手段,探索硅基负极循环过程中的失效机理,获得高面积容量硅电极的长循环稳定性。本项目主要取得如下重要结果:(1)提出了“软硬弹塑性策略”,开辟了硅基负极用复合粘结剂设计的新思路,设计制备硬质聚糠醇/软质聚乙烯醇复合粘结剂用于硅电极的粘结剂,,硅电极的面容量可达10mAh/cm2,是现有锂离子电池面容量的三倍之多,助力锂离子电池比能量密度达到300Wh/kg。同时,该策略对于其它大体积变化的负极材料,如锡和氧化铁,均有普适性效果;(2)制备了部分锂化的聚丙烯酸(PAA)和Nafion,即P-LiPAA和P-LiNF,将硬质P-LiPAA和软质P-LiNF相混合构建了软/硬调制的三功能粘结剂(N-P-LiPN)。Si@N-P-LiPN电极分别实现了28.88mg/cm2的超高面载量以及49.59mAh/cm2的超高面容量;(3)将聚丙烯酰胺(PAM)光栅化到离子导电瓜尔胶(GG)骨架上,构建了一种具有高离子电导率的应力分布粘合剂(GG-g-PAM)。高负载的Si@GG-g-PAM电极在只含有2.5wt%粘结剂的情况下,保持了超过3mAh/cm2的高面积容量。本项目提出了制备复合粘结剂的“软硬弹塑性”策略,解决高载量条件下硅基储锂材料的长循环稳定性,为硅基负极的商业化提供理论和实验支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
锂离子电池硅负极高离子导电性自修复粘结剂及性能研究
离子辐照硅基薄膜作为大容量高功率锂离子电池负极材料研究
用高容量碳质负极与梯度硫正极构建硫-锂离子电池的研究
锂离子电池用三维复合负极材料基础研究