An all optical system for sensing and rapid detecting the ultrashort electromagnetic pulses(EMP) based on optical modulation (OM) and optical pulse time stretching(OPTS) technologies is proposed in this project. The chief aim of this project is to study and solve the key scientific issues related in realizing an optical system that combines both the ultrashort EMP sensing system and signal rapid testing systems integrally. The researches of the proposed project focus on:①Investigating the influence of structure parameters of multi-cladding fiber on its energy distribution, then obtain the influence of structure parameters on its nonlinear and dispersion character. ② Investigating the inherent influence of magnetron sputtering parameters on the fabrication of multi-cladding fiber, and grasping the key fabrication technology of multi-cladding fiber. ③Finding the factors that influence the time window width of the modulated light signal for capturing EMP and analyzing the influence mechanism,in order to achieve the effective capture of EMP as well as the expansion of the light signal in the time field. ④Setting up mathematical expressions to describe the relationship between original EMP signals and output of the proposed optical integrated system. Consequently, finding the way to reconstruct the original modulated EMP signals. The achievement of this project is a great breakthrough in the key technology of all-fiber EMP sensing and rapid detection. It has great potential to upgrade the technique level of high nonlinear and high dispersion optical waveguides construction. Additionally,our works will provide a strong technical support for observation of ultrashort-time scale signal in other fields such as military, biology, medical etc. In sum, the research of this project has a great scientific significance and application prospect.
项目提出基于光载波、光时域拉伸技术的电磁脉冲快速检测技术,旨在研究集电磁脉冲传感与快变信号检测为一体的全光纤集成化技术中的关键科学问题;①研究多包层光纤结构参数对光能量分布的影响,确定光纤结构参数对其非线性及色散特性的影响规律;②研究磁控溅射法工艺参数对多包层光纤制备影响的内在规律,掌握实现多包层光纤的关键核心技术;③研究影响光时域信号拉伸时间宽度的因素,实现电磁脉冲的有效捕获和光时域信号的拉伸与放大;④研究光载波信号的信息解调技术,建立系统输出的完整数学表达,实现电磁脉冲信号的恢复与重建。项目研究将在全光纤电磁脉冲传感与快速检测的关键技术上取得重要突破;将有力提升新型高非线性、大色散波导等关键光学器件的研究水平;为我国军事、生物、医疗等各个领域超快现象的观测提供关键的技术支撑。因而具有重要的科学意义和广阔的应用前景。
项目研究按申请书所拟定研究内容执行,完成了所有研究内容。经项目研究,掌握了多包层光纤结构参数对光能量分布的影响,确定了光纤结构参数对其非线性及色散特性的影响规律;探明了影响光时域信号拉伸时间宽度的因素,实现了电磁脉冲的有效捕获和光时域信号的拉伸与放大;提出了基于压缩采样的光载波信号信息解调技术,建立了系统输出的完整数学表达,实现了电磁脉冲信号的恢复与重建。在理论研究基础上,组建了基于光载波、时域展宽的高速电磁脉冲检测系统,并对测量系统的性能进行了实验验证,结果表明:在使用相同的时域展宽倍数的情况下,该系统通过压缩采样技术,可以进一步提高系统的等效采样率,从而降低时域展宽信号对后端电子ADC的采样速率要求;结合11倍的时域展宽模块,PTS-CS系统利用三路平均采样率约为1 GS/s的数采卡,最高实现了~110GS/s的等效采样率。.项目研究成果在学术高水平期刊上发表论文3篇,国际学术会议2篇,培养博士生1名,硕士生3名。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
粗颗粒土的静止土压力系数非线性分析与计算方法
硬件木马:关键问题研究进展及新动向
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
基于双光频梳结构的超快时域干涉测量系统的研究
全光比例-积分-微分控制系统与超快光脉冲相干自锁定
基于非线性Fano共振人工电磁材料的超快光开关
基于飞秒光场调制实现超快电子脉冲自压缩的研究