Deep brain stimulation is the only effective approach for many neural and psychiatric diseases. There are more than a million people with Parkinson's disease, epilepsy and depression, etc, awaiting for such clinical treatment. The accurate implantation of the deep brain stimulation electrodes is the key to the success of the surgery. To overcome the challenges of accurately targetting the functional area for electrode implantation, this project aims to solve the problems in three dimensional localisation, higher spatial resolution, quantitative and objective measurement, and combination of functional and structural information. Nanotechnology is utilised to produce probing electrodes with multiple contacts distributed over the 3-D surface so that the deep brain local field potentials related to the function of the nucleus and the isometric impedance spectra related to the anatomy are aquired simultaneously. Modelling of the structural and physical properties of the nucleus is built based on MRI imaging of individuals. Intra-operative targetting approach with probing, confirmation and evaluation will be developed according to fusion of functional,structural and anatomical information. The guidance of localisation of deep brain stimulation target will be formed based on multiple stage procedure and the objective evaluation approach of stimulation parameters will be developed based on function of nucleus modelling and analysis. The technology of accurate target localisation and objective optimisation of neuromodulation will improve the effecacy of clinical treatment, reduce side effects and extend the battery life, but also enhance the innovation of key technologies in neuromodulation research field of China.
深部脑刺激是许多重症神经、精神系统疾病的唯一有效治疗手段,我国有近百万的帕金森、癫痫、抑郁等患者需要接受该手术,而刺激电极植入的准确性是决定手术成功与否的关键因素。本项目面向临床上电极植入功能区靶点精确定位难点,针对三维空间定位、高分辨率、定量客观、功能与结构信息融合的需求,利用微纳加工技术研制多触点三维电极,实现功能相关脑深部场电位特征、结构相关各向异性阻抗谱信息同步获取,结合个体核磁共振影像、几何特征、物理特性进行神经核团三维建模,形成功能、结构双模态信息相融合的术中实时功能靶点探测、确认和评估技术,建立深部脑刺激电极植入分级定位理论和基于神经核团功能区建模分析的个体化神经调控参数客观评估方法。本项目建立的精确定位和调控优化技术将提高深部脑刺激临床治疗效果、减少副作用和节省电池使用寿命,并推动我国深部脑刺激神经调控技术完善和创新。
本项目目标是建立深部脑刺激电极植入精确定位和神经调控优化方法与技术,本项目开展了脑深部场电位神经信号分析、神经信号建模、影像三维建模、生理影像融合、神经信号记录技术与设备研发等工作。.从神经振荡的节律、平衡与耦合特性出发,建立了三维神经信号分析方法,并基于小波变换稀疏表达方法,建立多节律动态神经状态分析方法。将术前高分辨率和术中/术后低分辨率核磁共振扫描影像进行配准融合,实现了深部脑刺激电极植入路径重建与神经核团三维空间结构的可视化,并提取丘脑底核局部场电位静息状态与运动状态下神经节律特征,建立生理与结构特征三维可视化方法。研发了用于脑深部场电位记录及疾病症状监测的可穿戴设备,实现了多信息、微负荷、长时程、大活动范围的神经信号及运动信息监测,并在临床应用。.研发脑深部场电位采集、运动监测可穿戴设备两种,相关分析软件两个。.本项目共发表期刊论文18篇及国内外会议论文十余篇,其中英文期刊论文7篇,EI收录中文期刊论文6篇,1篇英文论文为期刊封面文章。申请发明专利6项,授权3项。申请软件著作权5项。.培养博士生2名,硕士生3名。.组织国际会议2次、组织国际培训班2次,参加国内外会议十余次。
{{i.achievement_title}}
数据更新时间:2023-05-31
伴有轻度认知障碍的帕金森病~(18)F-FDG PET的统计参数图分析
内点最大化与冗余点控制的小型无人机遥感图像配准
双吸离心泵压力脉动特性数值模拟及试验研究
掘进工作面局部通风风筒悬挂位置的数值模拟
空气电晕放电发展过程的特征发射光谱分析与放电识别
基于清醒/睡眠状态的闭环脑深部刺激方法研究
基于脑功能图谱的皮层功能区磁刺激靶点定位关键问题研究
脑深部刺激穿刺手术丘脑底核靶点核团组织的移位行为机理研究
植入式脑深部刺激器的闭环控制方法研究