This program aims to design and synthesize D–π–A–A type metallic porphyrin dyes and metal-free organic dyes with using DFT calculations. These organic dyes with high molar absorption coefficients and broad absorption range will be applied in dye-sensitized solar cells to replace the high-cost noble-metal Ru-based dyes with limited resources. In order to suppress dye aggregation and electron recombination and improve the power conversion efficiency (PCE), the bulk electron-donor groups will be introduced to the structures of dye molecules. DFT calculations have been involved to verify and optimize the dye molecular structures and have proved that these designed dye molecules meet the basic conditions for using as efficient organic dyes. A series of analytic measurements will be used to clarify the internal relationships between the structures and properties of dye molecules, reveal the mechanism of charge separation and injection and master the method of suppressing electron recombination. The co-sensitization of porphyrin dyes with high short-circuit current and metal-free organic dyes with high open-circuit voltage will both improve the current and voltage of the solar cells. In this program, three co-sensitization methods, including intermolecular co-sensitization, intramolecular co-sensitization and supermolecular co-sensitization, will be innovatively investigated. The co-sensitization methods will be further optimized to improve the PCEs of the solar cells and realize the adjustability of the status of the co-sensitized dyes.
本项目拟结合DFT理论计算,设计并合成D–π–A–A结构的金属卟啉类和纯有机类染料,并用这类高吸光系数、宽光谱吸收的有机染料来替代价格昂贵、资源有限的贵金属钌染料应用于染料敏化太阳能电池中。项目拟在染料结构中引入较大体积的电子给体单元以有效地抑制染料自聚集、降低电子复合率、提高染料的光电转换效率,利用DFT理论验证并优化染料的分子结构,证明设计的分子满足作为高效染料的基本条件。通过系列测试分析明确这类新结构染料的结构-效能的关系,掌握电子分离与注入机理及降低电子复合率的有效方法。将拥有宽光谱和大短路电流的卟啉染料与高开路电压的纯有机染料共敏化以同时提高电池短路电流和开路电压,在本项目中,我们将进行三种共敏化方法的创新性探索,即分子间共敏化、分子内共敏化和超分子体系共敏化。项目通过优化共敏化方案进一步提高电池的效率,并重点实现对共敏化染料吸附状态的有效调控。
在DFT理论计算辅助下,我们设计并合成了一系列金属卟啉/纯有机染料,并用这些高吸光系数、宽光谱吸收的有机染料来替代价格昂贵、资源有限的贵金属钌染料应用于染料敏化太阳能电池中。我们在染料结构中引入较大体积的电子给体单元以有效地抑制染料自聚集、降低电子复合率、提高染料的光电转换效率,利用DFT计算对染料的分子结构进一步优化,证明设计的分子满足作为高效染料的基本条件。然后,我们通过系列测试分析明确了新结构染料的结构-效能的关系,分析了电子分离与注入机理及降低电子复合率的有效方法。我们将宽光谱和高电流的卟啉染料与高开路电压的纯有机染料共敏化以同时提高电池短路电流和开路电压,在本项目中,我们进行了多种共敏化方法的创新性探索。项目通过优化共敏化方案进一步提高电池的效率,并重点实现对共敏化染料吸附状态的有效调控。另外,我们还开发出了一系列可应用于有机染料体系的新型对电极催化剂材料,取得了良好的结果。
{{i.achievement_title}}
数据更新时间:2023-05-31
面向云工作流安全的任务调度方法
TGF-β1-Smad2/3信号转导通路在百草枯中毒致肺纤维化中的作用
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
煤/生物质流态化富氧燃烧的CO_2富集特性
聚酰胺酸盐薄膜的亚胺化历程研究
新型有机染料敏化剂的设计和合成
高原天然染料敏化剂的提纯、改性和共敏化的研究
高效有机染料的合成及其染料敏化太阳能电池的研究
新型基于吡咯有机染料敏化剂的合成与性能研究