Based on the "spring-damper" system, the traditional semi-active suspension has the problem of reflection power which is difficult to eradicate. It seriously restricts the further improvement of vehicle ride comfort and hinders the further promotion of suspension. Therefore, based on the new "inerter-spring-damper" system, a new semi-active suspension with skyhook inertance and damping control was put forward. The new problem of vehicle dynamics was studied, which is dynamic matching and coordination control between dual skyhook suspension and vehicle. According to the similarity principle of electrical and mechanical analogy, in this project, dynamic matching problem of dual skyhook suspension and vehicle was equated to the impedance matching problem in mechanical network. By the network theory, optimum match between dual skyhook suspension and vehicle impedances was summarized as a class of multi-port network maximum power transmission problem of damping with inertance change. After the mathematical model of this problem was solved by using network transformation and Lagrange multiplier method, the changing law of the skyhook inertance and damping with the internal impedance of the vehicle and the realization method of the dynamic simulation of skyhook inertia force and damping force by the actuator were mastered. A control strategy and method for dynamic tracking of skyhook inertance and damping with internal impedance of vehicle was put forward to achieve the best match between suspension and vehicle, to solve the problem of inherent reflection power of traditional semi-active suspension, and to improve ride comfort with taking account of handling stability. Finally, the bench test and road test were carried on. The project is to provide theory and method support for applications of semi-active suspension with continuously adjustable inertance and damping.
基于“弹簧-阻尼”体系的传统半主动悬架存在难以根除的反射功率问题,严重制约着汽车行驶平顺性的进一步提高,阻碍了悬架的进一步推广。为此,基于“惯容-弹簧-阻尼”新体系提出惯容与阻尼双天棚控制的新型半主动悬架,研究车辆动力学面临的新难题——双天棚与整车的动态匹配及协调控制。根据机电相似原理,将双天棚与整车匹配动力学问题等效为机械网络中的阻抗匹配问题,运用网络理论将阻抗最佳匹配归结为带阻尼惯容比约束的多端口网络最大功率传输问题,利用网络变换及拉格朗日乘数法求解其数学模型,掌握双天棚随整车内阻抗的变化规律及执行器动态模拟天棚惯性力与阻尼力的实现方法。提出执行器动态跟踪双天棚随整车内阻抗变化的控制策略与方法,实现悬架与整车最佳匹配,解决传统半主动悬架固有的反射功率问题,进一步提高行驶平顺性并兼顾操纵稳定性。最后进行台架和道路试验验证。项目可为惯容与阻尼连续可调半主动悬架的应用提供新的理论和方法支持。
惯容与阻尼双天棚半主动悬架与整车的匹配及控制是车辆系统动力学面临的一个新课题。本项目在国家自然科学基金委的资助下开展双天棚半主动悬架系统设计理论、匹配方法与控制研究。主要研究内容包括:提出了一种实施双天棚半主动控制的经典参考系统——虚拟双天棚悬架系统,揭示了双天棚悬架系统的载荷适应性原理和路况适应性原理,在此基础上,发展了天棚惯容和天棚阻尼与车辆悬架系统的匹配方法;提出了一种虚拟双天棚系统的半主动实现方法,基于不同的执行器形式发展了两种半主动控制方式和三种不同的控制策略,并揭示了可调惯容与阻尼对系统性能的影响规律,阐明了其与系统的匹配规律;设计研制了一种新型液力式惯容与阻尼集成可调装置,开展了惯容与阻尼集成可调装置台架试验,提出了惯容与阻尼分离提取方法,通过准静态和静态力学特性试验分离出惯性力与阻尼力,建立了可靠的惯容与阻尼集成可调装置模型,掌握了惯容与阻尼特性及其随调节阀位移的变化规律;建立了惯容与阻尼双天棚半主动悬架系统整车模型,开展了系统性能仿真分析,从理论上验证了双天棚半主动控制策略的有效性,证实了双天棚半主动悬架系统既具有载荷适应性又具有路况适应性,能够大幅提高车辆的行驶平顺性;设计了双天棚半主动悬架的控制器,该控制器采用分层控制策略,采用上、下层控制协调的方法,来适应载荷及路况的变化,时频域的分析结果表明,所设计的控制器达到了设计要求,具有载荷以及路况适应性;基于D2P快速原型搭建了控制器及悬架控制系统半实物实验平台,开展了惯容与阻尼双天棚控制半主动悬架系统试验,验证了双天棚控制方法的正确性与有效性,证实了双天棚半主动悬架系统具有良好的载荷与路面适应性。研究成果推动了半主动悬架系统理论与设计、控制方法的发展,为惯容与阻尼连续调节的半主动悬架系统及零部件设计提供了理论依据与方法支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
跨社交网络用户对齐技术综述
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
城市轨道交通车站火灾情况下客流疏散能力评价
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于FTA-BN模型的页岩气井口装置失效概率分析
基于摄动解析与辐角原理的时滞半主动惯容悬架系统失稳机理与补偿控制研究
基于惯容的无源机械零极点配置与半主动控制
馈能半主动悬架的整车耦合机理及多目标协调控制
车辆主动悬架与电动助力转向系统的匹配理论及其协调控制