In the collisional energy transfer study of the excited state molecules and ground state molecular, a basic problem is that how the vibrational energy of different excited states molecular can affect collisional energy transfer distribution and collisional transfer rate coefficients. Using the stimulated emission pumping, the highly vibrational states of alkali molecular base electronic obtain population. The collisional relaxation occurs with the collisional population and H2, CO2. Measuring the time-resolution laser-induced fluorescence spectrum signal of the alkali molecules collided population vibrational level, we can obtain the highly vibrational single quantum and multiquantum relaxation rate coefficients. High states of alkali molecules in collisions with H2 make H2 rovibrational states by population. By scanning CARS (coherent anti stokes Raman scattering), activating CARS and time-resolved CARS outline, we can get H2 each rovibrational state population ratio, then determine the different high state of H2 rovibrational level population influence, and look for vibration-vibration and vibration-rotational resonance transfer with H2 collision experimental evidence. Alkali molecules highly vibrational energy collide with CO2, and CO2 highly rotational state (0000, J) or vibrational state (0001 ) and so on obtain the population . The overtone spontaneous radiation rate is very small and the number density of CO2 vibrational population can not be measured, so we use the overtone absorption to measure the number density of CO2 vibrational population. By transient stimulated radiation time-resolved fluorescence signals, stimulated radiation rate can be obtained. From the stimulated radiation Doppler profile combined with absorption coefficient measurement, the population distribution of the CO2 rovibrational states can be determined, thus the CO2 rovibrational state rotational temperature and average rotational energy can be obtained. The Doppler profile half width determines the CO2 average translational energy, from which energy transfer distribution function in the collision of the alkali molecular highly vibrational states and CO2 can be obtained.
在激发态分子和基态分子的碰撞传能中,一个基本问题是不同激发态分子的振动能量怎样影响碰撞转移的能量分配和碰撞转移率。利用受激发射泵浦,碱分子基电子的高位振动态得到布居,它们与H2,CO2发生碰撞驰豫,测量碱分子的时间分辨激光感应荧光光谱信号,得到高振动态的单量子和多量子驰豫速率系数。碱分子高位态与H2碰撞,使H2的振转态得到布居。由扫描CARS(相干反斯托克斯拉曼散射),激活CARS及时间分辨CARS轮廓,得到H2各振转态布居数之比,确定不同高位态对H2振转能级布居的影响。碱分子高位振动能与CO2碰撞,使CO2的高位转动态或振动态等得到布居。利用泛频吸收作CO2振动态布居数密度测量,可得到受激辐射率。从受激辐射的多普勒轮廓结合吸收系数的测量,得到CO2振转态的转动温度和平均转动能。由Doppler轮廓的半宽度确定CO2平均平动能,由此得到碱分子高位振动态与CO2碰撞中的能级转移分布函数。
高激发态分子与基态分子之间的碰撞在物理与化学的基本过程的研究中起重要作用。小而轻的分子的量子态能以很高的精度分辨,并能用激光泵浦技术得到其高振动态,在碰撞中得失的能量可用多种激光检测方法得到,分子初生态的转动和平动能量轮廓利用高分辨瞬时激光感应荧光光谱测量。.利用受激发射泵浦得到Na2,K2,LiCs分子的高振动激发态。在Na2 (33,11)+Ar中,分别测量v=33,25,15和5相对强度的时间演化,结果表明只存在Δv=-1的单量子能量转移,而多量子弛豫不出现。由Na2 (33,J)态瞬时线轮廓测量,得到角动量平均改变<ΔJ>与相对速度的平均改变<Δvrel>的关系,小的<ΔJ>相应于小的<Δvrel>改变,当时<ΔJ>>10时,<Δvrel>有很大增加。在Na2 (v=30,45)/CO2碰撞中,CO2的平移能增加与Na2振动能有很大的关系,Na2振动能的35%的增加,CO2(0000)J态的平动能增加56%。K2(30,20)在K2中,分别拟合K2激发态的振动和转动的相对布居,得到Boltzmann振动温度Tv和转动温度Trot,振动平衡在5μs内就已达到,Tv的迅速下降是K2(30,20)与K2的共振能量交换。而Trot在5μs时降到它的最低点后缓慢上升。LiCs(v=25-35)与CsH碰撞,当LiCs(v≥30)时,CsH(v=1)的每一个转动态的反冲速度有明显增加;对于LiCs(25-29),CsH(1)的转动温度约为1200K,对于LiCs(30-35)为1500K。对于v≥30,随v的增加迅速增大,对于v<30,随v的增加仅缓慢增大。.在KH(v)/CO2的碰撞中,对于v=19→14,20→15和23→16,ΔE分别为133,-75和8cm-1。放热轨道(19→14)使KH的转动能增加约68cm-1,平动能增加约63cm-1。吸热过程(20→15),KH转动能减少73cm-1,平动能不变。CO2的转动和平动基本上均不起补偿作用。在多次碰撞条件下的LiH(0,2)与H2的能量转移,分为二个阶段,在5μs内,完成近共振振动-振动交换过程,LiH振动态的v=10→6,10→2和10→0跃迁相应于振动态0→1,0→2和0→3的跃迁。在5-50μs内,主要弛豫过程是相继单量子振转过程,这个过程不是很有效,因为随转动角动量改变的增大,转移率按指数减弱。
{{i.achievement_title}}
数据更新时间:2023-05-31
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
基于多模态信息特征融合的犯罪预测算法研究
双吸离心泵压力脉动特性数值模拟及试验研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
高振动激发态氢化碱分子与二氧化碳的碰撞能量转移
高激发碱原子与氢分子反应碰撞能量转移的实验研究
碱分子激发态的预离解和碰撞转移
原子与分子碰撞振动和转动激发的理论研究和计算