Reasonable lightweight support structure and vibration isolation measures can decrease the weight and harmful vibration, which also is an effective way to reduce the cost and improve the reliability of the spacecraft, aircraft and other equipment. The elastic wave band gaps of phononic crystals have broad application prospects in the field of vibration isolation. But at present, researches on effectively combination of phononic crystal vibration isolation and support structure design is not mature enough, and there are many important theoretical problems and technical difficulties. This project proposes a method of support structure design based on bandgap mechanism of phononic crystals, and obtains a new support structure with good performance on both support and vibration isolation. Firstly, a truss topology structure is obtained by multi-objective optimization design of the support structure which works for a specific object, and then the truss topology structure is split into several substructures. Phononic crystal structures with a certain frequency range of band gaps and equivalent mechanical properties, are designed to replace the substructures at different positions of the truss structure. The effect of vibration isolation within the band gaps is enhanced by material damping. The method to integrate the phononic crystal structures at each position is investigated. Effect factors of support and vibration isolation performance of the integral structure is analyzed by finite element simulation. And finally a prototype system is produced to test its performance of support and vibration isolation.This project aims to blend vibration isolation mechanism of phononic crystals bandgap in support structure design, and provide theoretical basis and design solution for new type of vibration isolation and support structures.
合理的轻量化支撑结构和隔振措施可以降低结构重量,减小有害振动,是降低航天器、飞行器等设备成本和提高可靠性的有效手段。声子晶体的弹性波带隙特性在隔振领域具有广阔的应用前景,但目前有关声子晶体隔振与支撑结构设计有效结合的研究尚不成熟,还存在着重要的理论问题和技术难点。本项目提出一种结合声子晶体带隙机理设计支撑结构的方法,获得的支撑结构可同时具备良好的支撑和隔振功能。首先针对具有确定支撑对象的支撑结构进行多目标优化设计,将获得的桁架形式的拓扑结构拆分为若干子结构。设计可替换不同位置子结构的声子晶体结构,使其具有特定带隙频率范围和等效力学特性,并利用材料的阻尼特性增强带隙内的隔振效果。研究各位置声子晶体结构集成方法,仿真分析影响集成的整体结构支撑和隔振效果的因素,研制原理样机并测试其支撑和隔振性能。本项目旨在将声子晶体带隙隔振机理融入支撑结构设计,为新型隔振支撑结构设计提供理论依据和设计思路。
合理的轻量化支撑结构和隔振措施可以降低结构重量,减小有害振动,是降低航天器、飞行器等设备成本和提高可靠性的有效手段。声子晶体的弹性波带隙特性在隔振领域具有广阔的应用前景,但目前有关声子晶体隔振与支撑结构设计有效结合的研究尚不成熟,还存在着重要的理论问题和技术难点。本项目提出一种结合声子晶体带隙机理设计支撑结构的方法,获得的支撑结构可同时具备良好的支撑和隔振功能。首先对宏观支撑结构进行动、静力学多目标拓扑优化设计,获得关键支撑传力路径。从一体化拓扑优化设计和参数设计两个角度出发,对构成桁架结构的杆/梁结构进行周期化设计,使其在保留自身支撑刚度的前提下产生隔振带隙。研究了利用粘弹性材料阻尼特性增加周期结构隔振效果的方法。设计了由具有周期子结构的杆构成的桁架结构并研制原理样机,通过仿真分析与试验测试相结合验证了隔振支撑一体化结构的动力学力学性能。本项目将声子晶体带隙隔振机理融入支撑结构设计,为新型隔振支撑结构设计提供了理论依据和设计方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
宽弦高速跨音风扇颤振特性研究
敏感性水利工程社会稳定风险演化SD模型
一种改进的多目标正余弦优化算法
基于混合优化方法的大口径主镜设计
变可信度近似模型及其在复杂装备优化设计中的应用研究进展
基于声子晶体理论的周期结构带隙特性设计及减振降噪应用探索
基于声子晶体的周期结构埋地管道振动带隙特性与减振方法研究
“声子晶体”混凝土材料的带隙特征与减振设计方法研究
基于梯度声子晶体的深基础工程隔冲击机理研究与优化设计