Using nano-composite and micro/nano-composite technology to produce high-performance P/M refractory tungsten-molybdenum materials with high obdurability and toughness, high temperature ablation resistance and multi-function is the key to realize its application in advanced technologies, and it is also a very important development direction of powder metallurgy field. Based on the preliminary research, this project will deeply discuss the scientific problems during the production and service of high-performance refractory tungsten and molybdenum materials by applying experiment research and analysis, simulation calculation and testing verification comprehensively. The following results are proposed to be obtained: Firstly, revealing nano in-situ composite fine grain strengthening mechanism, revealing ceramic phase micro/nano composite strengthening mechanism and its high temperature resistance mechanism as well as ablation resistance mechanism. Secondly, clarifying the enhancement effect and function law of new phase formation, fine grain size effect and ceramic second phase particles on the microstructure interface strengthening, obdurability, interface bonding and gradient composite interface. Thirdly, finding out the service behavior under multifactor coupling environment, providing theoretical direction for the application of refractory tungsten and molybdenum materials in major model and engineering, so as to establish thorough technology and theory of high performance fine-structure refractory tungsten and molybdenum material which produced by powder metallurgy method. The achievements of this project have a profound historical significance in improving key material level for industry and defense weapons and equipment, as well as in the development of advanced materials preparation science and technology and powder metallurgy research field.
采用“纳米复合/微纳复合”设计制备具有高强韧、耐高温抗烧蚀等超高性能和多功能复合的高性能粉末冶金难熔钨钼材料,是实现在尖端技术应用的关键,也是粉末冶金领域重要发展方向。本项目拟在前期基础上,结合实验研究分析、计算模拟仿真与考核验证,对其制备和服役中的科学问题深入探讨,揭示纳米原位复合细晶强韧化机理、陶瓷第二相粒子增强微纳复合耐高温抗烧蚀机理,及其在服役失效损伤行为和机制,阐明纳米原位复合/微纳复合中新相形成、细晶尺寸效应、陶瓷第二相粒子对微结构界面强化、强韧性、界面结合与梯度复合界面等的增强效应和作用规律,弄清楚材料在多因素耦合环境下使用服役行为,进一步指导材质性能优化,为其在重大型号与工程应用提供指导,从而建立完善的高性能微细结构粉末冶金难熔钨钼材料的技术和理论。本项目成果对提高我国工业和国防武器装备关键材料水平、对先进材料制备科学技术和粉末冶金学科方向的发展,具有深远意义。
采用“纳米复合/微纳复合”设计制备具有高强韧、耐高温抗烧蚀等超高性能和多功能复合的高性能粉末冶金难熔钨钼材料,是实现在尖端技术应用的关键,也是粉末冶金领 域重要发展方向。本项目拟在前期基础上,结合实验研究分析、计算模拟仿真与考核验证,对材料制备和服役中的科学问题进行了深入探讨,揭示了纳米原位复合细晶强韧化机理、陶瓷第二相粒子增强微纳复合耐高温抗烧蚀机理,及其在服役失效损伤行为和机制,阐明了纳米原位复合/微纳复合中新相形成、细晶尺寸效应、陶瓷第二相粒子对微结构界面强化、强韧性、界面结合等的增强效应和作用规律,弄清了材料在多因素耦合环境下使役行为,进一步指导了材质性能优化,为其在重大型号与工程应用提供指导,从而建立了较为完善的高性能微细结构粉末冶金难熔钨钼材料的技术和理论。本项目成果对提高我国工业和国防武器装备关键材料水平、对先进材料制备科学技术和粉末冶金学科方向的发展,具有深远意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于图卷积网络的归纳式微博谣言检测新方法
高性能金属材料激光制备与成形关键科学问题研究
新型分离材料的制备与应用的关键科学问题
GaN基兰-绿光材料制备及应用中的科学问题
金属基复合材料制备与加工中的科学问题