Deep sea mining was an important source of future human resources, and its significance of study was great. Currently, study of miner was focused on walking on the submarine. For the complex terrain, even cobalt rich crusts and hydrothermal sulfide mining, it was difficult for the miner. In view of the above problems, this project was based on the traditional crawler self-propelled collector, and made the ballast water tank volume change, so weight of collecting device was increased or decreased, and miner could dive, float and hover. Compared with the traditional collecting device, which can mine not only on the seamount but also on the submarine, because there were cobalt rich crusts and hydrothermal sulfide on the seamount, so the reliability of miner was improved .The main contents of the project: the stress analysis of the conditions was set for miner,and the motion control differential equations was deduced, and that dynamic response and influencing factors of the governing equations was discussed in the different posture. By use of simulation for CFD, MATLAB, the dynamic load size and hydrodynamic fitting functions were determined; Through flowing experiment and hydrodynamic experiment, the lift and resistance and propeller forces of control surface were determined. Aiming at free hover state, the discriminant conditions and the nonlinear relationship were established between the motion parameters, the external forces and the motion control model. So the precise control of the operation attitude of the mining machine was realized. and model experimental device was developed in order to verify the theoretical study and numerical analysis .The results will promote exploration and practice of deep sea mining.
深海采矿是人类未来资源的重要来源,对其展开深入研究非常有意义。当前集矿机的研究立足于海底行走采矿,对于复杂地形,甚至富钴结壳及热液硫化物的开采困难重重。针对以上技术问题,本项目在传统履带集矿机的基础上,利用压载水舱体积的改变,增大或减小集矿机的重量,实现下潜、上浮及悬停。较之传统的集矿装置,既能在洋底集矿又能在海山上开采富钴结壳和热液硫化物,提高了集矿机的可靠性。本项目主要研究内容:对集矿机空间运动进行动力学分析,建立了6自由度运动控制微分方程。利用CFD、MATLAB求解和仿真,确定动载荷的大小和水动力拟合函数;通过淌水实验、水动力实验,确定螺旋桨的推力及控制面产生的升力和阻力。针对自由悬停状态,建立判别条件和确立运动参数、外力与运动控制模型的非线性关系,实现对集矿机作业姿态的精准控制。同时,开发和研制样机,对其理论研究和数值分析进行实验验证。研究结果必将对深海矿物开采及实践起推动作用。
深海采矿是人类未来资源的重要来源,对其展开深入研究非常有意义。根据功能要求,采用模块化设计方法设计了集矿机的总体结构,并利用SolidWorks进行了三维建模与整体装配。为了降低航行阻力及提高空间利用率,采用了Myring型回转体外形;根据设计水深,设计了圆柱形环肋骨的耐压舱,并进行了强度及稳定性分析。 .利用Fluent对集矿机的阻力变化曲线、表面压力分布进行分析,结果表明集矿机的总阻力与速度呈抛物线关系;集矿机首尾存在较大的压力差,当速度一定时,集矿机的阻力随着攻角的增加而增大。.为提高水下机器人阻力性能,本案对水下机器人进行了参数化,采用最优拉丁超立方方法进行直航阻力和艇体包络体积的采样,建立了满足工程精度的二阶响应面模型,分析了全局变量对直航阻力和包络体积灵敏度的影响。采用NSGA-II算法进行优化求解,得到了水下机器人最佳阻力结构,并对比了其他几种优化算法,结果表明优化后的水下机器人直航阻力减小6.17%,艇体包络体积增大7.56%,艇体表面压力有所改善,提高了设计分析效率。.为了实时跟踪机器人的位置,利用MEMS传感器对水下机器人姿态进行测量。利用传感器测量数据,标定加速度计、陀螺仪以及磁力计传感器。为了解决ROV传感器数据存在高频噪声的问题,利用PM(Parks-McClellan)算法和双线性变换法设计数字低通滤波器进行滤波降噪。为了实现ROV姿态估计,本案设计了经典互补滤波、显性互补滤波、梯度下降法以及乘性扩展卡尔曼滤波等算法估计ROV姿态角度。其中,乘性扩展卡尔曼滤波效果最好。.为了ROV精准控制。先利用solidworks建立水下机器人模型,并进行力学分析,推导了动力学方程,通过拉氏变换得到水下机器人转艏运动和深度运动的传递函数,并通过CFD计算确定阻力与阻力矩,通过二阶拟合确定水动力系数。通过内环进行角速度控制,外环进行角度控制实现水下机器人艏向控制;通过内环进行加速度控制,外环进行位移控制实现水下机器人深度控制,实验结果表明,串级LADRC控制效率更高,稳定性更好。研究结果必将对深海矿物开采起推动作用。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
基于LASSO-SVMR模型城市生活需水量的预测
基于SSVEP 直接脑控机器人方向和速度研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
深海采矿扬矿管线系统流固耦合力学行为及快速分析方法研究
深海底采矿机器人多领域系统协同建模与集成优化设计研究
深海采矿船升沉对大偏移扬矿管动态特性的影响研究
基于深海稀软底质流变分析的履带式集矿机行走特性及结构优化研究