Magnesium-based cardiovascular stent is promisingly to be developed into a 'revolutionary' next generation product for cardiovascular disease treatment, but the basic research is still far from satisfactory, which limits its development. Herein, we propose to study the critical process of Mg-based cardiovascular stents which will be faced inevitably in clinic application, namely the evolving dynamic corrosion/degradation process of Mg-based biodegradable materials for cardiovascular stent application, to fathom its electrochemical mechanism as well as its biocompatibility responses. We plan to employ the underlying science and methods(including their combinations) in terms of electrochemistry, physio-chemistry as well as biocompatibility, to elucidate: 1) the dynamic evolving process of corrosion/degradation occurs on Mg-based cardiovascular stents and its electrochemical mechanism; 2) the developing surface/interface physio-chemical characteristics and its biocompatibility responses; 3) evolving degradation process of prototype product of Mg-based cardiovascular stent. The research aims to reveal the interactions and sciences underlying the 'service conditions', 'corrosion/degradation mechanism', 'physiochemical surface properties' and 'biocompatibility' thereof. Finally, based on the above knowledge we will prompt new design ideas to fashion a new clinically-oriented biodegradable magnesium-based biomaterials surface and interface. The understandings will not only theoretically guide the development of next generation Mg-based cardiovascular stent, but also expand and deepen the theories regarding new biomaterials' surface and interface electrochemistry.
镁基可降解血管支架可望成为 "革命性"的治疗心血管疾病未来产品,但其基础性研究跟进尚显不足,极大地困扰其发展。申请针对镁基血管支架材料人体服役中的关键问题--动态腐蚀降解演化,深入研究该过程电化学作用机制、表(界)面物理化学演变及其生物相容性响应机理性关联;拟动用电化学/物理化学与材料生物相容性理论与方法(如阶段性取出与现场/原位相结合),重点研究: 1)镁基材料服役环境下(模拟与动物体内埋植)的动态腐蚀降解演化电化学机制;2)动态降解表(界)面物理化学状态演变与生物相容性响应机理;3)原型产品的动态腐蚀降解演化过程。旨在深刻揭示镁基血管支架材料"服役条件"- "腐蚀降解机制"- "表面物理化学性质"-"生物相容性"之间的内在联系与科学原理,并尝试提出新型镁基可降解材料表(界)面改性设计思路。项目将为镁基可降解血管支架的应用提供基础理论支持,并丰富新生物材料表(界)面电化学的科学认识。
镁基可降解血管支架正成为新一代治疗心血管疾病未来产品,但其基础性研究跟进尚显不足,极大地困扰其发展。本项目针对镁基血管支架材料人体服役中的关键动态腐蚀降解演化问题,深入研究了该过程的电化学作用机制、表面物理化学演变及其生物相容性响应及其关联。研究采用电化学及物理化学与材料生物相容性理论与方法(如阶段性取出与现场/原位相结合)重点开展了镁基材料服役环境下(模拟与动物体内埋植)的动态腐蚀降解演化电化学机制、动态降解表面物理化学状态演变与生物相容性响应机理以及镁基可降解金属表面改性。研究获得了关于镁基可降解金属的动态降解以及生物响应的关键数据以及以此为指导的表面改性策略与优化。项目总结了镁基血管支架材料"服役条件- 降解机制- 表面物理化学性质-生物相容性"之间联系与机制,为镁基可降解血管支架的应用提供了基础支持并丰富了新生物材料表面电化学的科学认识。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
动物响应亚磁场的生化和分子机制
可控降解的铁基血管支架材料研究
国产生物医用材料血管内支架生物相容性实验研究
镁基支架的降解和细胞应答的血管生物反应器研究及与体内行为的对比
生物医用镁基复合材料力学及生物相容性研究