Fast development of R&D on semiconductor industry brings a huge challenge in the size-shrinkage of semiconductor components. The reduction of internal components in order to integrate more units into integrated circuits(ICs) has had severe reliabiliy problems when unit size reduces to nanometer level. The external factors and physical properties may interactively affect the semoconductor components and associated system's performance. In this research project, we propose a hierarchical Bayesian model for nanoscale component failure to estimate the unknown parameters of the underlying reliability structure by considering the effects from external factors and physical properties. Previous statistical analysis of failure procedure has employed either the classical parametric or nonparametric statistical models. In this proposal,we will incorporate dielectric physics of failure model in the form of the Arrhenius-Weibull model to determine the underlying probability structure of the failure distribution, and meanwhile to reveal the internal failure mechanism in terms of the varying physics and relevant external factors. The proposed hierarchical model gives physical meaning to the shape and scale parameters of Weibull distribution which is then used to estimate the dielectric characteristic life , the failure rate and acceleration factor all of which are necessary to predict the life profile of a nanoscale unit. Markov Chain Monte Carlo (MCMC) methods and real accelarated life tests will be conducted to obtain the posterior results which are subsequently used to determine the associated reliability index and to conduct the sensitivity analysis. The failure mechanism will be studied based on the results we plan to obtain from our model and the physical meaning (or parameters)in the proposed method. Based on our proposed reliability model, the optimization strategy for IC system will be studied. This proposal will provide more reliable parameter estimators when evaluating the reliability and performance of the nanoscale semiconductor components. Meanwhile, we may provide theoretical fundamentals for the reliability of electronic systems with precise estimates. It is believed that this research project will bring certain insights and guidances to engieers for IC design and manufacturing, and it will also significantly improve nanotechnology for future semiconductor industries.
纳米级半导体元器件的研发是现代半导体产业发展的主要趋势。器件特征尺寸的不断减小给集成电路系统的性能提升和寿命保证带来了全新的挑战,因此纳米级半导体可靠性理论已成为当前可靠性领域关注的重要研究内容之一。元器件是集成电路的基本组成单元,其设计、制造过程中的外部因素以及内在物理属性与半导体可靠性紧密相关。本课题以纳米级半导体元器件为研究对象,结合其内在物理属性和外部因素,对纳米级半导体可靠性理论开展全面和深入的研究。具体研究内容包括:系统地研究外部因素和内在物理属性对纳米级元器件可靠性的影响度,探索各种影响因素之间的关联性;揭示纳米级半导体元器件的性能演变规律和失效机理;提出基于贝叶斯分层结构的可靠性模型和参数估计方法;研究纳米级集成电路的系统可靠性和设计优化策略。本课题将不仅为纳米级半导体系统可靠性评估奠定理论基础,同时也为其结构设计、工艺优化等提供参考依据,将对半导体产业的发展产生深远意义。
元器件的加工过程的各种因素对其质量和可靠性具有重要的影响。本项目围绕复杂制造系统,尤其是半导体元件加工过程对产品质量和可靠性的影响展开了系统的研究。通过充分考虑元件内在物理属性和外部因素和对工艺方面的探索和试验,同时结合利用过程中各类传感数据,分析各种影响因素之间的关联性。利用半导体元件加工过程中的动力学模型,揭示其加工失效的内在机理;在不影响通用性原则下,将所研究的方法拓展到其他复杂元器件加工领域中;在系统可靠性研究方面,项目提出了一种利用多元传感数据的性能监测方法,为系统可靠度和剩余寿命的预测提供了一定科学的依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
粗颗粒土的静止土压力系数非线性分析与计算方法
中国参与全球价值链的环境效应分析
转录组与代谢联合解析红花槭叶片中青素苷变化机制
基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例
相关失效系统的非整数阶失效定义与可靠性建模
基于Copula的失效相关系统可靠性建模理论与优化方法研究
结构系统疲劳失效相关性的宏细观分析与可靠性建模
基于竞争失效的数控系统PCB性能退化可靠性建模与评估研究