The timely diagnosis and effective control of major infectious diseases urgently require highly sensitive, accurate, and rapid detection techniques for pathogenic microorganisms. Resonant micro-nanometer biosensors have the advantages of high sensitivity, fast response, low cost, etc., and are ideal for meeting this development demand. This project aims at the basic scientific issues and common key technologies such as low capture efficiency and long immunological binding time for resonant micro-nano biosensors, and proposes a novel micro/nano resonant biosensor with localized microelectrodes and microfluidic channels, using AC electroosmosis to promote the efficient and rapid capture of biomolecules. Combined with local immunoprobe molecular modification methods and highly sensitized nanoparticle amplification technology, improves the specificity and accuracy of biosensing. By investigating the high-precision construction method of high-quality resonators with localized integrated microelectrodes, establishing the convection and mass transfer model of fluids in microchannels under alternating electric fields, clarifying efficient capture mechanism of biomolecules under the action of alternating electric fields, and studying the localized directional high-density functionalization method of the probe molecules, the highly sensitive, highly accurate and rapid detection of pathogenic microorganisms with a detection limit of 0.1 ng/mL, an accuracy of ≧80%, and a detection time of 10 min will be achieved. Publish 4-6 SCI/EI papers, apply for more than 2 patents, and train 2-3 graduate students.
传染性重大疾病的及时诊断和有效控制迫切需要高灵敏、高准确、快速的病原微生物检测技术。谐振式微纳生物传感器具有灵敏度高、响应快、成本低等优势,是满足这一发展需求的理想选择。本项目针对谐振式微纳生物传感器存在的捕获效率低、结合时间长等基础科学问题与共性关键技术,提出局域集成微电极和微流道的新型微纳谐振式生物传感器,利用交流电场促进生物分子的高效、快速捕获,结合局域免疫探针分子修饰方法和高增敏纳米粒子放大技术,提高生物传感的特异性和准确度。探索局域集成微电极的高质量谐振器高精度构筑方法,建立交流电场下微通道内流体的对流与传质模型,阐明交流电场作用下生物分子高效捕获机理,掌握局域定向高密度生物探针分子的功能化方法,实现病原微生物的高灵敏、高准确、快速检测,检测下限0.1 ng/mL,准确性≧80%,检测时间 ≦ 10 min。发表SCI/EI论文4-6篇,申请专利2项以上,培养2-3名研究生。
传染性重大疾病的及时诊断和有效控制迫切需要高灵敏、高准确、快速的病原微生物检测技术。本项目针对以上应用需求,研制了局域集成微电极和微流道的新型微纳谐振式生物传感器。按研究计划高质量制备了Au局域微悬臂梁谐振传感芯片;阐明了交流电场作用下生物分子高效捕获机理,并结合微流道结构增强了生物分子捕获效率,降低了检测下限和响应时间;优化了局域定向高密度生物探针分子的功能化方法,发展了基于金纳米粒子的信号增强技术,最终实现了副溶血弧菌、大肠杆菌、肿瘤蛋白标志物等生物分子的高灵敏、高准确、快速检测。检测下限达0.1 ng/mL,检测重复性≥90%,检测时间最快可达10 min。发表SCI论文5篇,申请发明专利2项,培养研究生5名。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
吉林四平、榆树台地电场与长春台地磁场、分量应变的变化分析
一种加权距离连续K中心选址问题求解方法
平行图像:图像生成的一个新型理论框架
高灵敏度微流集成光传感器研究
基于微流控的空气病原微生物快速捕获和检测技术的研究
基于高灵敏腔体微电极阵列的抗肿瘤药物筛选新型传感器
三维仿生微纳结构集成微流控芯片用于循环肿瘤细胞高灵敏检测