One of most important issues for bone tissue engineering is how to precisely control the bioactive composition and large-pore structure of porous scaffolds in order to effectively modulate the osteogenic differentiation of stem cells and the in vivo bone formation. Silicate-based bioactive ceramics possess the ability to induce the osteogenic differentiation of stem cells and to further stimulate the in vivo bone formation by releasing bioactive Si ions. Three-dimensional printing (3D-Printing) offers a new way to prepare porpous scaffolds with more controllable large-pore structures than conventional methods for preparing porous scaffolds.The main aim of this project is to prepare silicate-based bioactive ceramic scaffolds by 3D-printing method, in which we will harness the advantages of osteostimulation for stem cell differentiation and in vivo bone formation of silicate bioceramics, and prepare the complex pattern structure of large pores by 3D-printing technique, and optimize the large-pore structure and mechanical strength of the prepared scaffolds by theoretical design and calculation. The effect of bioactive composition and complex pattern structure of large pores for the prepared silicate scaffolds on their mechanical strength, degradation, osteogenic differentiation of stem cells and the in vivo bone formation as well as the corresponding mechanism will be further investigated. The significance of this project is that a new class of silicate-based bioactive ceramic scaffolds with controllable composition and large-pore structure as well as improved biological properties may be developed for bone tissue engineering to regenerate large-bone defects.
在骨组织工程方法中,最突出的问题之一是如何精细控制多孔支架材料的组成与大孔结构,从而实现对干细胞的成骨分化以及体内成骨的有效调控。硅基生物陶瓷通过释放硅(Si)等活性离子能够诱导干细胞的成骨分化并促进体内成骨。三维打印法相对于传统的支架制备方法更能有效控制大孔结构。本项目的主要研究目的是采用三维打印方法制备硅基生物活性陶瓷支架,从支架组成方面利用硅基类生物陶瓷的诱导干细胞成骨分化和成骨促进性的特点,从支架孔结构方面通过三维打印方法制备复杂的图案化大孔结构,并辅助理论设计与计算来优化支架的大孔结构与力学强度。从而揭示硅基生物活性陶瓷的支架组成与复杂的大孔图案化结构如何影响其力学强度、降解性、骨髓基质干细胞的成骨分化以及体内成骨能力及其相应的机理。最终将可能发展一类新型的、组成和大孔图案化结构可控的、生物学性能优良的硅基生物陶瓷骨组织工程支架用于大块骨缺损修复。
在骨组织工程方法中,最突出的问题之一是如何精细控制多孔支架材料的组成与大孔结构,从而实现对干细胞的成骨分化以及体内成骨的有效调控。硅基生物陶瓷通过释放硅(Si)等活性离子能够诱导干细胞的成骨分化并促进体内成骨。三维打印法相对于传统的支架制备方法更能有效控制大孔结构。本项目采用三维打印方法制备了一系列硅基生物活性陶瓷支架,从支架组成方面利用硅基类生物陶瓷的诱导干细胞成骨分化和成骨促进性的特点,从支架孔结构方面通过三维打印方法制备复杂的图案化大孔结构,并辅助理论设计与计算来优化支架的大孔结构与力学强度,从而揭示了硅基生物活性陶瓷的支架组成与复杂的大孔图案化结构如何影响其力学强度、降解性、骨髓基质干细胞的成骨分化以及体内成骨能力及其相应的机理。最终发展了一类新型的、组成和大孔图案化结构可控的、生物学性能优良的硅基生物陶瓷骨组织工程支架用于大块骨缺损修复。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
不同改良措施对第四纪红壤酶活性的影响
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
三维打印具有可控大孔和空心管结构的海藻酸钠/纳米介孔生物玻璃支架用于骨组织工程
三维打印制备介孔生物玻璃/聚乳酸复合支架协同超声刺激促进骨修复研究
兼具肿瘤治疗与骨修复的生物活性支架的可控制备及生物学响应
三维打印介孔生物活性玻璃/PLGA同心圆柱复合支架用于抗骨结核药物的节律性缓释