In view of the circumstances that characterize China’s capital market, the origin of these circumstances, and the psychological characteristics of heterogeneous Information investors, considering the difference between the level of investor self-learning and the degree of information feedback, this project explores and the heterogeneous information investor trading strategy model with social network environments. Based on the impact of behavioral biases of heterogeneous Information investors and changes in the trade environment, this project then takes theses characteristics and principles and integrates them into stock market crash risk measurements to construct a new theory, methodology, model, and applied framework based on the risk measurements of the heterogeneous Information investors and changes in the trade environment offered by internet service platforms. By creating a deeper understanding of the impact of heterogeneous information investors on stock price crash risk with social network environments, we aim to advance the reference dependencies between neighbors based on Multi-Agent technology build a realistic artificial stock market, improve cash risk management and market supervision. This analysis also useful for creating a set of evaluation methods and standards to address problems in the trade environment while taking into account the “Chinese characteristics” of China’s capital market. It provides a standard reference point to examine the turmoil caused in the financial system by changes in the trade environment, to simulate relevant economic plans, and to evaluate the effectiveness of economic.
从交易环境变化和异质信息投资者行为偏差共同作用的视角,考虑投资者自主学习程度和信息反馈程度的差异性,构建社交网络环境下异质信息投资者交易策略模型;探索基于中国资本市场“情境”与异质信息投资者心理特点的股票市场投资者行为特征和交易策略演化规律,并将这种特征与规律融入股票市场崩盘风险测度,研究考虑外部交易环境变化和异质信息投资者共同作用下股价崩盘风险度量的新理论、新方法和应用框架体系;采用Multi-Agent技术搭建贴合现实的人工股票市场,并展开对社交网络环境下异质信息投资者对股价崩盘风险的影响模拟仿真研究,同时依托对邻居效应的分析来解释这些影响因素之间的关系。本项目将有助于人们理解崩盘风险的本质特征及为金融审慎监管提供更为深入的理论基础,为检验交易环境变化对资本市场的冲击、相关经济制度安排的模拟和仿真,以及经济政策作用效果判断提供可以参照的对象和标准。
从交易环境变化和异质信息投资者行为偏差共同作用的视角,考虑投资者自主学习程度和 信息反馈程度的差异性,构建社交网络环境下异质信息投资者交易策略模型;探索基于中国资 本市场“情境”与异质信息投资者心理特点的股票市场投资者行为特征和交易策略演化规律, 并将这种特征与规律融入股票市场崩盘风险测度,研究考虑外部交易环境变化和异质信息投资 者共同作用下股价崩盘风险度量的新理论、新方法和应用框架体系;采用Multi-Agent技术搭 建贴合现实的人工股票市场,并展开对社交网络环境下异质信息投资者对股价崩盘风险的影响 模拟仿真研究,同时依托对邻居效应的分析来解释这些影响因素之间的关系。本项目将有助于 人们理解崩盘风险的本质特征及为金融审慎监管提供更为深入的理论基础,为检验交易环境变 化对资本市场的冲击、相关经济制度安排的模拟和仿真,以及经济政策作用效果判断提供可以 参照的对象和标准。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
跨社交网络用户对齐技术综述
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
黄河流域水资源利用时空演变特征及驱动要素
硬件木马:关键问题研究进展及新动向
投资者赌博偏好对股价崩盘风险的影响研究
大数据视角下外部信息环境因素对股价崩盘风险影响机理与作用机制研究
股价崩盘风险对市场有效性的影响:基于信息环境的中介机理
机构投资者股权集中度影响股价崩盘风险的传导路径研究