The global energy crisis and environmental problems are becoming more and more serious. The high efficiency and energy saving of motors has received great attention. When amorphous alloys are applied in the stator core of high-speed motor, the energy consumption can be significantly reduced. However, the electromagnetic vibration and noise which is caused by the magnetostriction coefficient of the amorphous core has become a key bottleneck to be solved. This project intends to comprehensively adopt theoretical analysis, numerical simulation and experimental testing methods. The magnetization characteristics and magnetostrictive properties of the core are explored. The electromagnetic-structure coupling dynamics model of amorphous alloy motor is established. The vibration characteristics of the motor under alone and joint action of the electromagnetic force and magnetostrictive effect are analyzed. Influences discipline of electromagnetic design parameters, structural design parameters and operating conditions on the electromagnetic vibration of the motor are explored. Sensitivity analysis and principal component analysis of design parameters are conducted. A multi-variable nonlinear system control model with key design parameters as multiple input variables and minimization goal of electromagnetic vibration amplitude and structural stress is established. Based on the radial basis function neural network intelligent algorithm, the specific and feasible vibration source control schemes are given from the materials, electrical and mechanical perspectives. The dynamics responses experiments and vibration source control experiments are conducted. The research results provide a complete solution for the electromagnetic vibration problem of amorphous alloy motor, which demonstrates significant economic and social benefits for promoting the large-scale popularization and application of amorphous alloy motor.
全球能源危机和环境问题日益严峻,电机的高效节能受到极大关注。将非晶合金应用于高速电机定子铁心时可显著降低能耗,但非晶铁心磁致伸缩系数引起的电磁振动噪声成为亟待解决的关键瓶颈。本项目拟综合运用理论分析、数值仿真和实验测试手段,探究铁心的磁化特性和磁致伸缩特性,建立非晶合金电机的电磁-结构耦合动力学模型,分析电磁力及磁致伸缩效应单独和共同作用时电机振动特性,探讨电磁设计参数、结构设计参数和运行工况对电机电磁振动影响规律,对设计参数进行灵敏度分析和主成分分析,建立以关键设计参数为多输入变量,以电磁振动幅值和结构应力最小化为控制目标的多变量非线性控制模型,基于径向基函数神经网络智能算法,分别从材料、电气和机械角度给出具体可行的振源控制方案,并开展电机动力学响应实验和振源控制实验。研究成果为非晶合金电机电磁振动难题提供了完整的解决方案,对推动非晶合金电机的大规模推广应用具有显著的经济效益和社会效益。
非晶合金电机有巨大的低碳节能应用潜力,研发高性能非晶合金电机对实现“双碳”目标具有重要意义,但非晶合金铁心磁致伸缩系数引起的电磁振动成为亟待解决的关键瓶颈。本项目围绕非晶合金电机的振动机理与振动抑制所面临的关键科学问题和研究难点展开深入研究,主要研究成果包括:.(1)自研了应力作用下非晶合金铁心磁化特性和磁致伸缩特性测试装置,提出了考虑应力依赖的非晶合金磁导率和磁致伸缩系数非线性解析模型;.(2)提出了考虑偏心率和齿槽效应的磁场分布解析方法,基于能量泛函变分原理,建立了电磁力和磁致伸缩效应共同作用时非晶合金电机完整的电磁-结构强耦合动力学模型;.(3)分析了非晶合金电机动力学响应的时域和频域特征,溯源了非晶合金电机定子铁心磁致振动成因,探明了材料、结构和电气参数的协同作用机制;.(4)创造性提出了互补材料减振策略,即通过打孔后填充负磁致伸缩材料抑振,基于动态搜索粒子群算法优化负磁致伸缩材料的大小、位置、形状、分布等参数,有效抑制了非晶合金电机定子铁心的振动;.(5)开展了单独非晶合金铁心和完整非晶合金电机的振动测试实验,并对比了采用负磁致伸缩材料抑振前后非晶合金电机样机的振动响应,实验结果与解析计算及软件仿真吻合良好,验证了电磁-结构耦合模型和振动控制方案的正确性和适用性;.(6)以项目负责人为第一作者/通讯作者共发表标注项目资助号的SCI论文7篇,其中Q1区论文6篇,申请国家发明专利9项,其中项目负责人为第一发明人7项,授权2项;项目负责人入选北京航空航天大学“卓越百人计划”(2020年)、北京航空航天大学青年拔尖人才支持计划(2021年)和第八届中国科协青年人才托举工程(2022年)。
{{i.achievement_title}}
数据更新时间:2023-05-31
低轨卫星通信信道分配策略
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于二维材料的自旋-轨道矩研究进展
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
基于非晶合金材料的新型高速高频永磁电机损耗-散热模型与电磁综合设计研究
径向电磁力激励下的大容量电机结构振动传递特性分析与振动预报
永磁电机-电力电子装置系统电磁振动与减振技术研究
高频超声振压制备块体非晶合金及其机理研究