Carbohydrates are the cheapest energy source for fish. However, unlike the case of mammals, fish appears to have a limited capability to use dietary carbohydrate for energy purposes. High-carbohydrate diets usually results in metabolic disorders of fish, as inevitably leads to nutritional and metabolic diseases. Our previous studies suggested that this might be ascribed to the mitochondrial dysfunction of fish. In addition, we found that peroxisome proliferator-activated receptor γ coactivator-1β (PGC1β) is closely involved in the mitochondrial biogenesis and function of fish. However, the potential mechanisms are still poorly understood. Bearing this in mind, using Megalobrama amblycephala as the target animal, the present study aims to 1) ascertain the roles of PGC1β in the mitochondrial biogenesis and function in hepatocytes in vitro through RNA interference; 2) illustrate the activation mechanisms of PGC1β through the phosphorylation mediated by AMP-activated protein kinase (AMPK) ; 3) investigate the activation mechanisms of nuclear respiration factor 1 (NRF1) through the transcriptional regulation of PGC1β ; 4) identify the target molecules of NRF1 ; and 5) alter the mitochondrial biogenesis and function in hepatocytes through glucose manipulations, and investigate the potential mechanisms mediated by the AMPK-PGC1β-NRF1 pathway. The results obtained here will partly illustrate the potential mechanisms by which PGC1β regulates the mitochondrial function of blunt snout bream Megalobrama amblycephala fed high-carbohydrate diets. It will also facilitate our understanding of the carbohydrate utilization by fish, as would benefit the development and application of high-carbohydrate feed in the aquaculture industry.
糖类是最廉价的能量物质,但鱼类对其利用率较低。日粮中过高糖水平导致鱼体代谢紊乱,并诱发多种营养代谢病。前期研究发现,鱼体糖代谢紊乱与线粒体功能损伤有关,且PGC1β在鱼体线粒体生物合成及功能调控中发挥重要作用,但潜在机制尚不明确。基于此,本项目利用基因沉默技术明确PGC1β在团头鲂肝细胞线粒体生物合成及功能调控中的作用。在此基础上,探讨AMPK介导的磷酸化修饰对PGC1β活性的调节作用以及PGC1β对NRF1活性的调节作用,并确定NRF1下游分子,进而明确PGC1β调节线粒体功能的途径。此外,结合体内、外试验,通过高糖诱导肝细胞线粒体功能损伤,初步阐明PGC1β介导的高糖诱导团头鲂线粒体功能损伤机理。上述研究可以初步阐明高糖诱导鱼体糖代谢紊乱的机理,部分揭示鱼类糖代谢障碍分子机制,并为高糖饲料在水产养殖中的应用提供参考。
糖类是最廉价的能量物质,但鱼类对其利用率较低。日粮中过高糖水平导致鱼体代谢紊乱,并诱发多种营养代谢病。研究发现,鱼体糖代谢紊乱与线粒体功能损伤有关,且PGC1β在其中发挥重要作用,但潜在机制尚不明确。基于此,本项目进行了如下研究:1)克隆出了团头鲂PGC1α与PGC1β的核心序列,确定了其功能位点及保守性,并明确了其在鱼体糖代谢及线粒体功能调控中的作用;2)探讨了干扰AMPK活性对PGC1β和NRF1蛋白表达的影响,初步明确了PGC1β调控鱼体线粒体生物合成的分子途径;3)使用羰基氰化物间氯苯腙诱导团头鲂线粒体稳态失衡,建立了鱼体线粒体功能损伤模型,明确了相关分子机制,并进一步验证了2)中确定的分子途径;4)通过动态采样,研究了高糖胁迫对团头鲂生长性能、线粒体生物合成与功能及糖脂代谢的影响,明确了高糖诱导鱼体线粒体功能损伤及代谢紊乱的分子机制;5)研究了二甲双胍对高糖胁迫团头鲂生长性能、线粒体生物合成及功能的影响,明确了其改善鱼体代谢机能的分子机制,为鱼体线粒体靶向营养调控物的研发奠定了基础;6)比较研究了硫胺素及其脂溶性衍生物-苯磷硫胺对高糖胁迫团头鲂生长性能、线粒体生物合成与功能及糖代谢的影响,开发出了安全、高效型鱼体线粒体靶向营养素;7)探讨了饲料中不同生、熟淀粉配比对团头鲂生长性能、线粒体功能和糖脂代谢的影响,确定了饲料中适宜的淀粉糊化程度,为高糖饲料中淀粉源的科学确定奠定了基础; 8)研究了饲料中不同糖水平及脂肪源对团头鲂线粒体生物合成及功能的影响,确定了二者的适宜配比,为高糖饲料配发优化及其科学配置提供了技术支持;9)研究了限饲对高糖胁迫团头鲂生长性能、氧化应激、炎症反应和糖脂代谢的影响,明确了能量限制改善鱼体代谢机能的分子机制,开发出了高糖饲料的科学投喂技术。上述研究初步阐明了PGC1β介导的高糖诱导团头鲂线粒体功能损伤的分子机制,筛选出了高效安全型鱼体线粒体靶向营养素-苯磷硫胺,确定了高糖饲料中的适宜淀粉源及脂肪源,并开发出高糖饲料科学投喂技术。相关结果部分阐明了鱼体糖代谢障碍的分子机制,改善了鱼体对饲料中糖类物质的利用率,降低了饲料成本,进而促进了我国淡水鲤科鱼类养殖业的健康、集约化发展。
{{i.achievement_title}}
数据更新时间:2023-05-31
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
转录组与代谢联合解析红花槭叶片中青素苷变化机制
五轴联动机床几何误差一次装卡测量方法
桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究
cAMP-PKA介导的高糖抑制团头鲂呼吸爆发功能的作用机制研究
miR-34a介导的SIRT1/FoxO1通路对团头鲂高糖代谢的调控机制
葡萄糖转运体调控团头鲂糖利用和代谢的研究
TNF-α调控团头鲂ATGL介导脂解作用的分子机制