Power supply is the largest barrier for the development of intellectronics system, and vibration energy harvesting is the best solution. The current vibration energy harvesting technology has the low conversion efficiency, the poor resonance frequency and large circuit loss. In this project, a novel collaborative piezoelectric-electromagnetic MEMS-generator for high efficiency scavenging vibration energy has been proposed to enhance the performance of generator. The integration strategy, the device design with good resonance frequency, and the circuit with low power consumption will be mainly investigated. The energy transmission and dissipation mechanism, the resonance frequency of MEMS device in multi-physics field and the interception effect will be illustrated. The goal of this project is to solve the problem induced by low-quality functional material, single conversion method, resonance frequency deviation and circuit loss, and maximize the conversion efficiency of device, which is important to the development of self-power intellectronics system.
能源供给是制约智能电子系统及相关技术发展的关键因素,环境振动能量采集是突破传统电池供电限制的最佳方案。针对振动能量采集普遍存在器件转换效率低、频响特性差和电路寄生损耗大的技术瓶颈,本项目创新性提出压电-电磁协同换能振动能量高效采集的研究思路,围绕振动微能源器件转换效率的最大化,重点开展器件一体化集成、优异频响特性器件设计和低功耗电路构建研究,揭示协同换能机制的能量传递和耗散规律、MEMS微拾振构件的多场耦合频响机制、集成交叉影响的作用规律和能量管理策略等基础科学问题,旨在突破低质量换能材料、单一换能机制、谐振频率偏离和电路损耗等问题对MEMS振动能量采集系统输出功率的限制,实现振动能量转换最大化,为智能电子系统的自供电工作模式提供理论基础和关键技术支撑,具有重要的科学意义和现实价值。
针对智能电子系统中能源供给受限难题,系统分析环境振动能量采集技术发展瓶颈。提出压电-电磁一体化集成式振动能量采集器,针对物理场耦合特性及其优化设计、器件一体化集成制造方法、超低功耗能量采集及电源管理电路、器件实现及系统验证四方面展开研究,突破了转换效率低、频响特性差和电路寄生损耗大的难题,相关研究成果在多物理场耦合设计、压电厚膜制备、MEMS工艺优化、低功耗能量采集及电源管理电路等方面起到了关键性作用。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
动物响应亚磁场的生化和分子机制
混采地震数据高效高精度分离处理方法研究进展
压电驱动微型精密夹持机构设计与实验研究
倒装SRAM 型FPGA 单粒子效应防护设计验证
压电式宽带振动能量高效采集系统设计基础研究
应用于物联网微电子器件的MEMS基压电微型能量采集技术研究
集成化压电宽频振动能量高效采集的关键技术研究
可穿戴纤维织物摩擦-压电复合式高效能量采集方法研究