Functional SiO2 Janus microsphere is assembled via the distributive-shield asymmetric wet-etching technique in paraffin-water emulsification system to constructe superhydrophobic-superhydrophilic energy gradient surface which will improve the auto-absorbent and transfer moisture properties. SiO2 Janus microsphere consists of a hemisphere with hydrophobic chain and TiO2 nano-particle as well as other hemisphere with epoxy group. Based on the auto-distribution and interface contact angle of SiO2 microsphere in oil-water interface, the Janus property is assessed. Cellulose fiber is modified to produce -NH2, which reacts with epoxy group on SiO2 Janus microsphere via ring-opening polymerization in alkaline catalysts sysytem. The synergistic effect of hydrophobic chain and micro-nano structure on the hydrophobicity of fabric is analyzed in order to offer the minimum surface energy resistance. The TiO2 on fabric is irritated from Ti4+ to Ti3+ by light energy, which results in the superhydrophobicity of fabric changing into bosseyed superhydrophilicity. The superhydrophilic surface can auto-absorb moisture and supply the maximum surface energy driving force of transfer moisture. The functional equation of surface energy gradient and vertical depth of SiO2 is established to reveal the regulation mechanism of auto-absorbent and transfer moisture. By controlling the superhydrophobicity and superhydrophilicity on both sides of fabric and the crystal form of TiO2, the function relationship between microspheres assembly conditions and the efficiency of water droplets gather and transportation is investigated.
为构建超疏水-超亲水能量梯度表面以赋予织物自吸湿-导湿性能,在石蜡-水乳化体系中采用分步屏蔽不对称湿刻蚀技术制备功能性硅基Janus微球;微球两半球表面分别组装疏水链/TiO2纳米粒子和环氧基。基于SiO2微球在油-水界面自分布性和界面接触角性能表征微球的Janus性能;通过碱性体系催化硅基Janus微球上环氧基与氨基化纤维表面-NH3开环聚合反应;研究SiO2疏水半球表面疏水链和微-纳构型对织物超疏水协同促进作用,以减少水滴自输送过程中的表面能阻力;以光能激发织物表面TiO2由Ti4+转变成Ti3+转化,诱导织物由超疏水态向单面超亲水态转化,并构建水汽自吸湿表面及水滴自输运最高表面能驱动力;为揭示自吸湿-导湿驱动机制,研究硅基Janus微球纵向疏水性变化规律,并建立表面能量梯度与微球纵向深度函数方程;通过调控织物两面接触角差值和TiO2晶体类型,阐明微球组装对水滴自收集和自输运效率影响。
项目以纺织品功能改性涂层为基础,通过制备纳米级功能杂化溶胶,并利用电化学、涂层、浸渍等方式实现纺织品功能改性。以氨基硅烷偶联剂氨基化纤维素纤维,并通过碱性催化系催化硅基Janus微球上环氧基与纤维表面—NH2发生开环聚合反应,从分子动力学上阐述硅基Janus微球与纤维素间构效关系;基于UV和暗处条件驱动纳米TiO2中的Ti4+ Ti3+相互转换原理,制备了改性TiO2杂化溶胶,用于织物改性后赋予了改性织物UV光开关可控亲水-疏水功能性和循环可逆性,实现织物光控动态润湿性,并对接触角衰减的原理深入研究。探讨硅基Janus微球表面能量梯度与水滴自输运关系,并建立表面能量梯度与硅基Janus微球纵向深度的函数方程,通过调控织物两面的超疏水和超亲水性分析接触角差值与水滴聚集和传导效率函数关系。通过该方法实现织物的功能化、智能化加工,提高产品附加值。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
农超对接模式中利益分配问题研究
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
金属基超亲水/超疏水复合结构表面滴状冷凝特性和强化机理研究
铜基超疏水-超亲水图型化混合表面强化滴状冷凝传热机理研究
聚苯并噁嗪基超疏水超亲油表面的仿生构筑、构效关系及双重自清洁机制研究
具有超亲水/微憎水微区的微纳结构表面的构建及性能评价