Space heating and cooling are the dominate parts of commercial energy consumption. Reducing the demand for indoor temperature regulation will have substantial impact on global energy use. It is expected to develop personal thermal management devices to provide heating or cooling to a human body instead of to the whole indoor environment. Recently, the discovery of two superimposed layers of iridophores in chameleons’ skin for color changing and reflecting sunlight calls for the fabrications chameleons’ skin spired materials to research and develop photonic crystals (PCs) with different optical properties and functionalities combined, and also contributing to wearable devices as artificial skin. Here, we designed the fabrication and characterization of a biologically inspired color and thermal controllable surface from micro/nanoparticles self-assembly, which emulates the two superimposed layers architectures of chameleons’ skin. By adjusting the size, morphology, constitution, functional groups of the micro/nanoparticles and the structure, wettability, adhesion force property of the substrates, serials of PCs with two superimposed layers structure on soft substrate could be fabricated with high quality and different patterns. The influence of week force between the micro/nanoparticles on self-assembly and the mechanism of the self-assembly process on various substrates will be researched. The chameleons inspired PCs display color change and IR-transmittance enhancement induced cooling effect with the PCs under mechanical strain process through their light propagation effecting and forbidden gap (stopband) in the photonic band structure. Furthermore, the PCs combined with a neurological-controlled switchable system form a wearable device for personal smart thermal management. The discovery of the PCs with multi-layer structure and different optical functions may find applications in camouflage, radiative cooling, and sensing devices.
针对建筑物加热或降温而消耗大量能源的现状,本项目创新性地模拟变色龙皮肤的颜色和温度双重调控功能,研究由微/米颗粒自组装形成的高质量双层柔性结构光子晶体,探索针对人类个体的热调控系统,开发可穿戴的颜色和温度可调控光子晶体材料的制备,降低能源损耗。本项目从加强微/纳米颗粒间的弱相互作用和调控组装基材的结构与性质两方面入手,通过设计制备不同尺寸、结构、化学组成和表面功能基团的微/纳米颗粒,研究颗粒间弱相互作用对自组装的影响;探索自组装基材表面微/纳米结构、浸润性和粘附力性质对颗粒自组装过程的优化;结合多种组装手段,制备系列双层结构的高质量、图案化柔性光子晶体;探索该光子晶体随柔性基材形变过程中微观结构和光学性能的可逆变化,并与商业化的人工智能控制模块结合,为制备仿变色龙皮肤结构的高质量柔性功能光子晶体提供理论和技术基础,最终实现颜色和温度智能控制的可穿戴器件。
光子晶体由于其特殊的光子禁带结构,在传感、检测、显示等领域受到广泛关注。从纳米颗粒出发,自下而上的在基材表面自组装是制备光子晶体的重要手段之一。本项目围绕如何通过调控基材与纳米颗粒之间的相互作用,形成的高质量、图案化光子晶体展开研究,从加强微/纳米颗粒间的弱相互作用和调控组装基材的结构与性质两方面入手,通过设计制备不同尺寸、结构、化学组成和表面功能基团的微/纳米颗粒,研究颗粒间弱相互作用对自组装的影响;开发系列特殊浸润性基材,探索自组装基材表面微/纳米结构、浸润性和粘附力性质对颗粒自组装过程的优化;结合多种组装手段,制备高质量、图案化的光子晶体芯片,选择性增强检测不同靶标的荧光信号,实现了多种金属离子和地下水样品的辨别分析。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
粗颗粒土的静止土压力系数非线性分析与计算方法
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
变色龙仿生光子晶体智能材料的构筑、调控与耦合
平板型柔性光子晶体波导及其器件的研究
光子晶体的制备与表征
量子点和光子晶体微腔耦合体系制备纠缠光子对的研究