There are a large number of small and micro holes structures on key parts of aeronautics and astronautics products. It is difficult to machine the holes because of difficult-to-cut materials and high requirements of surface quality and machining efficiency. This project focuses on the machining challenge of small and micro holes on the critical components of aero engines such as film cooling holes on turbine blades. A new synchronous hybrid machining method of EDM and ECM for small and micro holes with no recast layer is presented in the project. In the method the working solution is neutral saline solution with ultralow concentration. The ECM processing proceeds simultaneously when the EDM processing happens. The high speed hole EDM could be carried out stably in the solution and recast layer could also be removed electrochemically at the same time especially with the vibrated electrode and pulse power supply of high and low voltages. Basic scientific problems and key technologies of the method will be studied in the project. The machining process and volt-ampere characteristics of multi physical/chemical fields coupling for the hybrid machining method of EDM and ECM will be illuminated. The synchronization/alternation melting- dissolve law of EDM and ECM will be studied and the transportation mechanism of process products and the influence of vibrated electrode will also be analyzed in the project. The key technologies such as the designation and optimization of electrode vibrate patterns, the designation of electrolyte flow field, the hybrid machining method with neutral saline solution of ultralow concentration, the optimization of technological parameters and the experiments of the hybrid machining will be made breakthroughs in the project. All of technologies will be applied to the machining of small and micro holes. The manufacturing level of small and micro holes on the critical components with difficult to machine materials of aero engines could be enhanced.
航空航天等领域的关键零部件中存在大量微小单/群孔结构,其材料难加工、表面质量和加工效率要求高,制造十分困难。本项目聚焦于难加工材料关键部件的微小孔制造难题,提出一种微小孔无重铸层电火花-电解同步复合加工技术,以超低浓度中性盐溶液为载体,在电火花加工的同时,同步进行电化学溶解反应,并通过电极的周期运动和高低压脉冲电源,强化电化学溶解作用,逐层电化学溶解去除重铸层,实现难加工材料微小孔结构的无重铸层高效制造。项目将针对该方法的基础科学问题和关键技术开展研究,重点阐明多物理/化学场作用下电火花-电解复合加工过程及其伏安特性、电火花-电解同步/交变熔融-溶解规律、复合加工下产物输运机制及其影响等基础科学问题,突破电极运动模式设计与优化、复合加工的流场设计与优化、超低浓度盐溶液电火花-电解复合加工等关键技术,并逐步应用于微小孔结构的制造中,提升难加工材料微小单/群孔结构的制造水平。
涡轮叶片是航空发动机中热负荷和机械负荷最大的部分,承受高温高压燃气的冲击。涡轮叶片气膜冷却孔的孔径一般在 0.25~0.5mm 之间,每片叶片上有数十至数百个孔,空间位置分布复杂。涡轮叶片通常采用高温合金等难加工材料制成,加工后不允许有重铸层、微裂纹及尖边,因此其制造难度极大,气膜孔加工技术已成为涡轮叶片制造的关键技术之一。本项目以涡轮叶片气膜冷却孔为对象,针对航空发动机微小群孔结构开展电火花-电解复合加工技术研究,重点研究电火花-电解复合加工在弱电导率溶液中的加工机理。通过试验现象观测,电压电流波形监测,加工产物分析等手段,验证了电火花-电解复合加工过程中火花放电高温熔融作用与电化学溶解作用可以同时存在的设想,且其中的电化学溶解作用可以有效去除重铸层。通过研究发现,以超低浓度的弱电导率中性盐溶液为载体,施加相应的脉冲电源,在每个脉冲周期进行电火花放电加工的同时,伴随着电化学溶解反应,可以同步进行电火花高速穿孔和电化学溶解,在电火花高速穿孔结束时,电化学反应也相应结束,而重铸层已经得到了明显去除。项目建立了微小孔复合加工的流场模型,分析了复合加工的流场特点,并进行了设计与优化。提出了高压冲液模式,改善了复合加工产物排出效果,提高了加工质量。开展了高低压复合脉冲的电火花-电解复合加工方法试验研究,在高电压脉冲输出阶段,电火花高速穿孔加工和电解加工同时进行;在低电压脉冲输出阶段,因其电压较低,不会发生火花放电,只存在电解加工,强化了电化学溶解作用,提升重铸层去除效果。为了优化溶液流场,提升小孔出口处的加工质量,提出冰层反衬电火花-电解复合加工方法,研究了低温环境下电火花-电解复合加工在材料去除、电极损耗以及加工质量方面的变化规律,最终加工出气膜冷却孔实物。项目共发表及录用论文14篇(均标注项目号),其中发表SCI收录论文7篇,EI收录论文2篇(不重复计算),中文重要核心2篇,会议论文5篇。授权国家发明专利5项。培养研究生8名。项目负责人在研究期间获得4项科研及人才培养奖项,入选4项国家及省部级人才计划,在7次国际/全国性会议上做大会/特邀/口头报告,主办/承办2次国际/全国性会议。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于图卷积网络的归纳式微博谣言检测新方法
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
三级硅基填料的构筑及其对牙科复合树脂性能的影响
微细电火花集成加工工件表面重铸层的成形机制和电解去除方法的研究
基于激光与管电极电解同步复合(Laser-STEM)的低损伤大深度小孔加工技术基础研究
变幅值脉冲可控调节电火花-电解复合加工基础研究
超声波电火花同步复合精微加工技术基础及应用研究