The updated data have shown that the spinal motoneuron (MN), a final common pathway of motor control, and its neuronal network have undergone dominantly structural and reflex plasticity not only in the motor learning and memory .function in spinal cord, but also during the processes of spinal cord injury (SCI) and its recovery. However, it is not clear what types of long-term synaptic plasticity in MN synaptic transmission are probably involved in motor learning and after SCI. In this project, the neonatal rat spinal cord slice preparation will be used, which is well suitable to cellular electrophysiological study of MN under modulation by the multi-pathway synaptic inputs and its neuronal network. By the intracellular or whole-cell recording of MN, microelectrode array recording of the neuronal network in slice, and their selective combination with intracellular Ca2+ imaging or SCI rat model, the input pathway properties, receptor and signal transduction mechanisms, spatiotemporal characteristics in neuronal network of long-term potentiation (LTP) in MN synaptic transmission, and effects of SCI on LTP (metaplasticity or homeostatic plasticity) will be intensively analyzed. From this study, more deep insights will be gained into the long-term synaptic plasticity and metaplasticity in MN synaptic transmission, their cellular and molecular mechanisms, as well as neuronal network properties. The research results will make the progress of understanding of mechanisms underlying spinal motor learning and motor control, and also provide theoretic principles to developing of effective clinical strategies for treatment and rehabilitation of SCI patients.
现有研究表明,不仅在脊髓的运动学习和记忆功能,而且在脊髓损伤(SCI)和修复中,作为运动控制最后公路的脊髓运动神经元(MN)及其神经元网络,都经历了反射通路和结构的可塑性变化,但它们涉及脊髓MN的何种长时程突触可塑性机制,仍不清楚。本项目将利用适合在多通路输入和神经元网络中进行细胞电生理分析的新生大鼠脊髓切片模型,应用MN细胞内或全细胞记录、微电极阵列记录,以及与胞内钙成像、SCI模型相结合的综合性技术,观察和分析脊髓MN突触传递的长时程增强(LTP)等的通路特性、受体和信号转导机制、神经元网络时空特性,以及SCI对其的影响(再可塑性或稳态可塑性),以期对脊髓运动学习和SCI过程中的长时程突触可塑性与再可塑性,及其细胞和分子机制、神经元网络机制有进一步的认识,为脊髓运动学习和运动控制机制的阐明提供新的资料,也为在临床上发展对SCI更有效的康复治疗策略提供理论基础。
先前研究表明,不仅在脊髓的运动学习和记忆功能,而且在脊髓损伤(SCI)和修复中,作为运动控制最后公路的脊髓运动神经元(MN)及其神经元网络,都经历了反射通路和结构的可塑性变化,但它们涉及脊髓 MN 的何种长时程突触可塑性机制,仍不清楚。本项目以新生大鼠脊髓切片MN细胞内记录为基础,结合建立微电极阵列(MEA)记录、PKC免疫荧光检测、脊髓损伤(SCI)模型,以及突触传递的表观受体动力学分析方法、脊髓伤害性反射(痛觉)时反应量-效关系实验和分析方法,观察和分析了同侧背根、同侧和对侧腹外侧索、及同侧的中央管周围等进行焦点刺激(focal stimulation),分别激活相应的外周传入、下行激活和脊髓内在神经元通路,在脊髓MN引发突触反应及其强制刺激诱导的长时程增强(LTP)的通路特性、受体和信号转导机制,特别是LTP的表观受体动力学特性,以及伤害性反射(甩尾反射)的时反应量-效关系特征等,并应用运动神经元的突触可塑性机制,开展偏侧咀嚼相关运动控制机制初步研究和矫正治疗应用,取得了明确的效果。研究结果对脊髓运动学习、SCI修复中的突触可塑性及其细胞和分子机制提供了进一步的认识,为脊髓运动学习和运动控制机制的阐明提供了新的资料,也为临床上发展对SCI、偏侧咀嚼更有效的康复治疗策略提供了可参考的理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
TGF-β1-Smad2/3信号转导通路在百草枯中毒致肺纤维化中的作用
Mills综合征二例
快刀伺服系统的控制系统设计
弧形构造带特征及其形成机制
滑膜软骨瘤:如何提高诊断准确率和治疗中肿瘤细胞的清除率
脊髓细胞特异性miRNAs调控损伤运动神经元凋亡的分子机制
运动对大鼠损伤远端脊髓内运动神经元的保护作用和机制研究
脊髓损伤后运动神经环路重建的细胞分子机制研究
基于脊髓GABA能抑制性中间神经元调控瘙痒的细胞和分子机制研究