Traditional orthodontic treatment is long time and high risk, and so acceleration of tooth movement has become a hot research topic. Due to the fact that orthodontic tooth movement is clinical consequence of mechanical adaptation of alveolar bone, the noninvasive method of mechanical vibration for accelerated orthodontic tooth movement has been of great concern. But the efficacy has been questioned. Aveolar bone is subjected to masticatory dynamic load, orthodontic force and vibration load in the treatment of acceleration of tooth movement by mechanical vibration. From the view point of couping dynamatic and static loads, the project will study the mechanobiological mechanism of acceleration of tooth movement under couping dynamatic and static loads by using the combination method of animal experiment and computational biomechanics. An animal model for orthodontic tooth movement will be established. Mechanical vibration will be applied. Effect of mechanical vibration on orthodontic tooth movement and bone remodelling will be observed by adopting tooth movement distance test, biomechanics test, bone histomorphometry, cellular and molecular biology and etal detection technology to clarify the mechanobiological mechanism of acceleration of tooth movement under couping dynamatic and static loads. A relatively perfect mathematical model will be developed, which investigates the relation of orthodontic tooth movement, biomechanical regulatory factors,biochemical regulatory factors, osteoblast, osteoclast and microstructure of alveolar bone. The mechanobiological mechanism of acceleration of tooth movement under couping dynamatic and static loads will be clarified further at quantitative level .The study will provide theoretical foundation and quantitative calculation method for mechanical vibration of the acceleration orthodontic tooth movement. So it will contribute to release the pain of patients with orthodontic tooth movement and reduce reduce the financial burden of patients.
传统正畸治疗周期长,风险大。因此,加速正畸牙移动成为研究热点。正畸牙移动是牙槽骨力学适应的结果。机械振动作为一种非侵入性的方法受到关注,但疗效存争议。机械振动加速正畸牙移动治疗中,牙槽骨承受咀嚼载荷、正畸力和机械振动等动静三种载荷。项目从动静载荷耦合角度出发,采用动物实验和计算生物力学相结合的方法探索动静耦合载荷作用加速正畸牙移动的机理。建立正畸牙移动动物模型,施加振动载荷,检测牙移动距离、应用生物力学实验、骨组织形态、细胞与分子生物学等检测技术,观测动静耦合载荷作用对牙移动及牙槽骨骨重建的影响,探索动静耦合载荷作用加速正畸牙移动的机理;建立数学模型,探讨牙移动、力调节因子、生物调节因子、成骨细胞、破骨细胞及牙槽骨微观结构间的关系,定量角度探索动静耦合载荷作用加速正畸牙移动的机理。项目为机械振动加速正畸牙移动奠定理论基础并提供计算方法,为正畸治疗患者解除病痛和减轻经济负担做出贡献。
传统正畸治疗周期长,风险大。因此,加速正畸牙移动成为研究热点。正畸牙移动是牙槽骨及周围组织力学适应的结果。机械振动作为一种非侵入性的力学疗法受到关注,但疗效存争议。本项目主要开展了如下研究:一、力学角度探索正畸机理,提出了考虑载荷特性及骨骼力学性能特征的骨生物力学调控机理,开展了咀嚼载荷对正畸牙移动影响的有限元分析;二、力学角度探索振动载荷加速牙正畸的机理,开展了周期动载荷作用下骨重建力学调控机制研究、动静组合载荷加速正畸牙移动的有限元分析、振动载荷对骨骼细胞流体剪切力影响的流固耦合数值研究;三、细胞分子生物学层次探索加速牙正畸机理,开展了咀嚼载荷对颌骨影响的力生物学调控机制探讨研究、动静组合载荷加速正畸牙移动力生物学机理的实验研究;四、骨力生物学数学模型研究,提出了基于应力状态的细胞分子水平力生物学骨重建模型、基于力生长因子的力生物学骨重建模型;五、口腔正畸振动仪的研制,设计了正畸用全身振动仪、小型颌骨振动仪;项目还扩展了基于径向曲线的颅面统计复原研究、口腔医用器件3D打印研究-基于生物力学原理的定制口腔医用器件3D打印技术研究等。项目基于加速牙正畸的力生物学特点,从力学角度和生物学均开展了相关研究,并设计了两种正畸用振动仪。项目可为机械振动加速正畸牙移动提供理论指导,有望为正畸治疗患者解除病痛和减轻经济负担做出贡献。
{{i.achievement_title}}
数据更新时间:2023-05-31
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
基于SSVEP 直接脑控机器人方向和速度研究
钢筋混凝土带翼缘剪力墙破坏机理研究
双吸离心泵压力脉动特性数值模拟及试验研究
掘进工作面局部通风风筒悬挂位置的数值模拟
关于正畸力值与牙齿移动方式的生物力学研究
木通皂苷D对正畸牙齿移动的作用及机制研究
机械力刺激下牙周膜干细胞来源外泌体参与调控正畸牙齿移动的研究
牙槽骨生物电学特性与正畸牙齿移动关系的研究