The undoped ZnO usually exhibits n-type electrical conductive property. However, the origin of the n-tpye carriers in ZnO remains controversial, which becomes the bottle-neck for controlling its electrical conductive property. As a result, it is of vital importance to understand the origin of the n-type carriers in ZnO. Based on this, this project aims to systemically study the intrinsic defects of single ZnO nanowire combining the in-situ fine structure characterization and the physical propery measurement.The specific content of this study is listed as follows: in situ observing and analyzing the intrinsic defects of single ZnO nanowire with the spherical aberration corrected high resulotion transmission electron microscope, and studying its electronic structure by the electron energy loss spectroscopy; measureing the temperature-dependent photoluminescence of single ZnO nanowire by the micro-photoluminescence spectrometer to reveal its defect states; fabricating the field-effect transitor based on single ZnO nanowire, measureing its electrical property in the vacuum environment in the scanning electron microscope to obtain the parameters like the carrier density and the mobility of the nanowire, and also performing the cathodeluminescence measurement of single ZnO nanowire with the cathodeluminescence spectrometer attached to the scanning electron microscope.At last, combining the above results of fine structure analysis and the physical property measurement as well as the theoretical calculation, the origin of n-type carriers in undoped ZnO will be revealed and the underlying physical mechansim responsible for the difficulty in controlling the electrical conductive property of ZnO will be analyzed. On the basis of this, the controlable dopping of ZnO will be explored and investigated. The implementation of this project will be helpful for resolving some basic problems about ZnO, and will be of great scientific significance and application value.
未掺杂氧化锌通常呈现典型的n型导电特性,然而其n型载流子来源仍然众说纷纭,成为调控氧化锌导电特性的主要瓶颈之一,因此明晰其载流子来源至关重要。基于此,本项目将结合原位精细结构分析和物性测量,系统研究单根氧化锌纳米线本征缺陷。研究内容如下:利用球差校正高分辨透射电镜原位观察分析单根氧化锌纳米线本征缺陷,并结合电子能量损失谱分析其电子结构;利用微区光致发光测试单根氧化锌纳米线变温PL谱,揭示其缺陷态;制作基于单根氧化锌纳米线的场效应晶体管,在扫描电镜真空环境中测试其电性能,获得载流子浓度及迁移率等参数,并利用附属于扫描电镜的阴极射线发光谱测试单根氧化锌的CL谱。综合上述精细结构分析和物性测量结果及理论计算,揭示未掺杂氧化锌n型载流子的来源,分析难以实现氧化锌导电特性调控的物理机制,在此基础上进行氧化锌可控掺杂的探索研究。项目的实施将有助于解决氧化锌的一些基本问题,具有重要的科学意义和应用价值。
未掺杂氧化锌通常呈现典型的n型导电特性,然而其n型载流子来源仍然众说纷纭,成为调控氧化锌导电特性的主要瓶颈之一,因此明晰其载流子来源至关重要。基于此,本项目将结合原位精细结构分析和物性测量,系统研究单根氧化锌纳米线本征缺陷。研究内容如下:我们利用微区光致发光测试单根氧化锌纳米线变温PL谱,揭示其缺陷态;完善了制作基于单根纳米线的场效应晶体管的制作工艺,通过电极选择、表面钝化等手段提高场效应晶体管性能;在扫描电镜真空环境中测试了其电输运性能,获得载流子浓度及迁移率等参数,并利用附属于扫描电镜的阴极射线发光谱测试单根氧化锌的CL谱;系统探讨了不同前驱体溶液对制备的氧化锌本征缺陷类型及浓度的影响;系统研究了利用金属薄膜调控氧化锌光致发光性能,探究了本征缺陷的作用。综合上述精细结构分析和物性测量结果及理论计算,揭示未掺杂氧化锌n型载流子的来源,分析难以实现氧化锌导电特性调控的物理机制,在此基础上进行氧化锌可控掺杂的探索研究。项目的实施将有助于解决氧化锌的一些基本问题,具有重要的科学意义和应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
原发性干燥综合征的靶向治疗药物研究进展
面向工件表面缺陷的无监督域适应方法
不同交易收费类型组合的电商平台 双边定价及影响研究
零样本学习综述
基于非本征/本征缺陷构建陷阱储能型可再生应力发光材料
GaN半导体中的残留杂质和本征缺陷
稀土掺杂微纳晶体本征光学双稳态的研究
碲化铋基合金的本征点缺陷调控及其热电性能优化