More and more research has been focused on water lubricated rubber bearings in recent years due to the bearing's widespread use and many advantages such as safety, environment friendly, vibration absorption and noise reduction. At present, The bush slat structure of water lubricated rubber bearing led to incontinuous hydrodynamic lubrication film, low load capacity, and easily burned bush during start and braking process even though the slat structure had good heat dissipation and impurity compatibility. Aiming at above mentioned problems, new bush structure of hydrodynamic and hydrostatic hybrid lubricated rubber bearing will be proposed, the hybrid bearing cavity will be designed and optimized in the project. The multi-factor coupling hydrostatic and hydrodynamic hybrid lubrication and load capacity mechanism of water lubricated rubber journal bearing will be studied considering the factors including cavity structure, cavity surface curvature, cavitation effect caused by curvature break, turbulent flow state, fluid inertia force, interface slippage, thermal field, impact load and velocity variation in start and braking process. With some emphasis, the influence of cavity structure slat distribution geometric parameters on hydrodynamic and hydrostatic hybrid lubrication and load capacity will be discussed. The optimum hybrid bearing cavity structure and slat distribution will be obtained by numerical simulation. Moreover the effect of the cavity and slat geometric and restrictive parameters on lubrication film thickness, pressure and temperature distribution profiles, as well as load capacity also will be researched in the reconstructive hybrid bearing experiment rig. The multi-factor coupling hydrostatic and hydrodynamic hybrid lubrication and load capacity mechanism of water lubricated rubber journal bearing will be gradually improved and completed by comparison of numerical and experimental results. The results will become the theoretical basis and be beneficial for water lubricated rubber bearing design.
水润滑橡胶轴承因其安全环保、吸振降噪等优点逐渐成为国内外应用与研究热点。目前水润滑橡胶轴瓦沟槽结构虽具有良好的散热和异物相容性,但存在动压润滑不连续、承载力低、起动制动易烧伤等问题。本项目针对上述问题提出水润滑橡胶轴承动静压协同润滑新结构,优化水润滑动静压轴承型腔,考虑轴瓦结构、型腔曲面、曲率突变造成的气穴效应、紊流以及流体惯性力、界面滑移、温度场、起动制动冲击载荷、速度变化等多因素耦合的影响,研究水润滑橡胶轴承多因素耦合动静压协同润滑承载机制。重点探讨型腔结构、沟槽分布和形状尺寸等参数对动静压协同润滑承载能力的影响规律,通过数值仿真获得最佳水润滑动静压橡胶型腔结构。通过改造水润滑动压轴承实验台,研究水润滑动静压橡胶轴承型腔结构、节流参数等对润滑膜厚、压力、温度和承载能力的影响,通过理论和实验完善水润滑橡胶轴承多因素耦合动静压协同润滑承载理论,为水润滑橡胶轴承的研发提供理论基础和技术保障。
本项目针对启动制动过程水润滑橡胶轴承轴瓦烧伤问题,提出了水润滑橡胶轴承动静压协同润滑新结构,优化了水润滑动静压轴承型腔,考虑轴瓦结构、型腔曲面、曲率突变造成的气穴效应、紊流以及流体惯性力、界面滑移、温度场、起动制动冲击载荷、速度变化等多因素耦合的影响,研究水润滑橡胶轴承多因素耦合动静压协同润滑承载机制。.开展了橡胶材料蠕变对水润滑橡胶轴承润滑性能的影响研究。基于Kelvin模型和三参量模型,分别得到了橡胶轴承黏弹性对润滑膜压力和膜厚的影响。两种蠕变模型下,润滑膜的压力均随着蠕变时间变小,润滑膜厚随着蠕变时间变大,同时接触区不断增大并趋于稳定。中心压力随着蠕变时间逐渐增大并趋于稳定,最小膜厚随着蠕变时间先增加后减小到稳定值。.研究了波动供水压力对水润滑动静压橡胶轴承弹流润滑性能的影响。供水压力波动对不同工况下轴承润滑影响程度不同,高卷吸速度和低载荷工况下润滑膜的膜厚较大,有利于缓解波动供水压力引起的膜厚波动的危害,有效避免轴瓦的损伤。.研究了润滑介质中的污染物颗粒附着在固体表面对水润滑动静压轴承润滑性能的影响。污染物颗粒在轴瓦表面上的附着会对水润滑动静压滑动轴承的进水孔造成堵塞。进水孔的堵塞程度越大供水压力越小,入口区和出口区的膜厚越小,润滑膜的压力越小,最小膜厚也基本呈现减小的趋势,而最大压力则呈现增大的趋势,污染物对进水孔的堵塞对于轴承润滑是有害的。.本项目还重点探讨了型腔结构、沟槽分布和形状尺寸等参数对动静压协同润滑承载能力的影响规律,通过数值仿真获得最佳水润滑动静压橡胶型腔结构。通过改造水润滑动压轴承实验台,研究水润滑动静压橡胶轴承型腔结构、节流参数等对润滑膜厚、压力、温度和承载能力的影响。.本项目通过理论和实验完善了水润滑橡胶轴承多因素耦合动静压协同润滑承载理论,为水润滑橡胶轴承的研发提供了理论基础和技术保障,是一项具有实际工程应用背景的应用基础研究。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
针灸治疗胃食管反流病的研究进展
水润滑橡胶轴承全息水膜压力无线传感在线监测及其润滑机理
高速滚动轴承多因素耦合动态润滑膜热失稳研究
无轴轮缘推进器用橡-塑多层复合材料水润滑径向轴承流固耦合润滑承载机理研究
无轴轮缘驱动推进器水润滑联合轴承热流固耦合承载机理研究