Photocatalytic reduction of CO2 to hydrocarbon fuels is a promising solution for the global warming and can realize the recyclable utilization of carbon materials. In view of the mechanism of photocatalytic reduction of CO2, the rate-limiting step is the formation of CO2·- from CO2 via a single electron transfer process. The barrier of such process is as high as -1.9 V vs NHE, so most of semiconductors could not provide such negative conducting electrons, resulting in a lower photocatalytic reduction efficiency of CO2. By enhancing the interaction between CO2 and photocatalyst, CO2 could be activated and then the barrier could be decreased, thus benefits photocatalytic reduction efficiency of CO2. Layered double metal oxides (LDOs) with strong apparent alkaline demonstrate powerful activation of CO2. In this project, we aim to prepare LDOs coated TiO2 for the photocatalytic reduction of CO2. The investigation will focus on the transfer mechanism of photo-generated electron between the interfaces of cocatalyst/LDOs and LDOs/TiO2, as well as the mechanism of enhancing photocatalytic reduction of CO2 by LDOs adsorption activation. The results will be beneficial for the development of highly efficient photocatalysts for photocatalytic reduction of CO2, with great importance of the conversion of CO2 to value-added fuels.
光催化CO2还原为碳氢化合物是解决环境问题和实现碳的循环利用理想途径之一。从CO2的光催化还原反应过程来看,其决速步骤是CO2经过单电子转移形成激发态CO2·-的过程。该过程的反应能垒最高(-1.9V vs NHE),绝大多数半导体都不具有足够负的导带电子,导致CO2的光催化还原效率较低。通过增强CO2与催化剂间的相互作用,实现CO2在催化剂表面的吸附活化,可以有效降低CO2单电子转移所需克服的能垒,提高CO2的光催化还原效率。层状双金属氧化物(LDOs)具有较强表观碱性,对CO2表现了很强的吸附活化能力。本项目拟采用LDOs表面包覆TiO2制备LDOs/TiO2核壳复合催化剂,研究光生电子在助催化与LDOs、LDOs与TiO2界面的传输机制,探索LDOs吸附活化增强CO2光催化还原的机理。研究结果将为开发高效的CO2还原光催化剂提供有益的借鉴,对实现CO2向高附加值燃料的转化有重要意义。
光催化还原CO2为碳氢化合物是解决环境问题及实现碳循环利用的理想途径之一。本项目针对光催化CO2还原过程中CO2吸附能力弱、反应能垒高等问题,利用具有较强表观碱性的镁铝层状双金属氧化物(LDO)表面修饰TiO2催化剂并负载Pt作为助催化剂,制备了Pt/MgAl-LDO/TiO2光催化剂,并对其结构、形貌及光学性能进行表征。与Pt/TiO2催化剂相比,Pt/MgAl-LDO/TiO2光催化剂在CO2还原反应中表现出了非常高的CO和CH4的产率。进一步的原位红外表征等结果表明,MgAl-LDO表面具有丰富的Lewis酸性和Lewis碱性位点,在H2O存在的光催化CO2还原体系中,CO2在MgAl-LDO/TiO2中的Lewis碱性位点吸附形成m-CO32-和m-HCO3-物种,然后转化为表面CO2-,而H2O则在MgAl-LDO/TiO2中的Lewis酸性位点吸附活化。研究表明MgAl-LDO的修饰不仅可以增强CO2在催化剂表面的吸附,有利于降低反应活化能垒,同时能够促进H2O的吸附和活化,从而大幅加快了CO2还原反应的动力学。在项目的支持下,围绕增强CO2表面吸附提高催化剂光催化活性的思路,进一步开发了以MgAl-LDO为载体负载TiO2光催化剂复合体系(TiO2/MgAl-LDO)以及羟基磷灰石表面修饰TiO2的光催化剂体系(HAP/TiO2),结果表明TiO2/MgAl-LDO和HAP/TiO2均具有优异的光催化还原CO2性能,并具有较好的稳定性。项目研究揭示了CO2光催化还原反应过程中面临的主要问题,提出了可行的潜在解决方案,为开发高效的CO2还原光催化剂提供了有益的借鉴,对实现CO2向高附加值燃料的转化有十分重要的意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
中温固体氧化物燃料电池复合阴极材料LaBiMn_2O_6-Sm_(0.2)Ce_(0.8)O_(1.9)的制备与电化学性质
复杂系统科学研究进展
Influence of calcination temperature on the photocatalytic performance of the hierarchical TiO2 pinecone-like structure decorated with CdS nanoparticles
Functionalization and Fabrication of Soluble Polymers of Intrinsic Microporosity for CO2 Transformation and Uranium Extraction
贵州织金洞洞穴CO2的来源及其空间分布特征
碱性增强铋系复合氧化物高效光催化还原CO2制备碳氢燃料研究
纳米氧化物光催化剂表面DCA结构单元的设计构建及其可见光催化还原CO2作用机制研究
TiO2基空心光催化材料的原位表面剪裁及其CO2还原性能与机理
TiO2/卟啉/MOFs超薄异质体的层级构筑及光催化还原CO2研究