Most thermoplastic elastomers are phase-separated copolymers, in which the soft domains with a low glass transition temperature serve as matrix and the dispersed hard domains with a high glass transition temperature provide physical cross-links and endow sufficient tensile strength during deformation. Thermoplastic elastomers have attracted tremendous attention in recent years due to their wide range of potential applications. New polymerization approaches, monomers and catalysts, and nanostructured fillers are used to enhance the mechanical properties of thermoplastic elastomers. In this project, sustainable monomers will be used to prepare novel block copolymers as thermoplastic elastomers with excellent mechanical performances via controlled living polymerizations. These elastomers can be applied in more areas by introducing special functional groups during polymerization. The morphologies and mechanical properties of will be well investigated to reveal the structure-property relationships. Rheological measurements will be conducted to characterize the rheological behavior of prepared thermoplastic elastomer. These types of thermoplastic elastomers will be processed into different shapes via suitable processing conditions. This project is based on the fundamental research with the goal of realizing the applications of novel block copolymers as sustainable thermoplastic elastomers. Eventually, the success of this project will provide new approaches and theoretical instructions for designing and fabricating sustainable thermoplastic elastomers with high performance.
对于热塑性弹性体而言,玻璃化转变温度较低的橡胶相作为基体,而玻璃化转变温度较高的硬相则作为分散相在基体中起到物理交联点的作用。目前对热塑性弹性体的研究主要聚焦在提出和使用新的聚合方法、新合成的单体和催化剂以及纳米填料对热塑性弹性体进行合成与改性。本项目将利用可再生的生物质单体结合多种可控的活性聚合方法制备新型的嵌段型热塑性弹性体,并使之具有优异的力学性能;通过引入一些特殊的官能团进一步拓展其应用;研究其相形貌与力学性能,从根本上揭示其结构与性能之间的关系;用流变学方法研究构筑的嵌段型热塑性弹性体,确定其流变学参数;探寻合适的加工工艺,对弹性体进行加工,以期获得可应用的产品。本项目从基础研究出发,最终落实到新型嵌段型可再生热塑性弹性体材料的开发和应用,既涵盖高分子化学与物理的基本问题,又能够为实际加工生产提供理论指导,对于环境保护和可再生资源的开发应用具有重要而深远的意义。
弹性体材料的宏观性能与其组成、微观形貌以及网络结构密切相关。对于大多数没有填充过的弹性体来说,限制其应用的主要因素是拉伸强度不够。除了通过在弹性体材料中引入天然的或合成的纳米填料可以显著提高其力学性能以满足使用需要,另外一种构筑具有优异力学行性能的弹性体材料的方法是在基体中引入额外的网络结构,网络结构可以是共价或非共价相互作用。本项目通过可控的活性自由基聚合方法构筑了一系列三嵌段型和梳型的具有功能性的弹性体材料,并细致地分析了弹性体中共价和非共价网络结构对性能的影响,并揭示了如何通过网络结构调控弹性体的宏观力学性能,可以为制备高强度高韧性的弹性体材料提供科学的理论指导。相关研究成果发表在Macromolecules, Applied Surface Science, Polymer Chemistry, Polymer Testing, ACS Applied Polymer Materials等国际SCI期刊上,共计5篇。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
硬段可结晶丁苯热塑性弹性体的设计合成与性能研究
新型刚性主链或纳米颗粒接枝热塑性弹性体合成及其结构性能关系
聚硅氧烷嵌段聚氨酯的合成、结构与性能的研究
含软硬段的嵌段共聚高分子液晶及其与热塑性树脂的共混