Thermoelectric materials as a new type of energy materials, can convert heat and electricity directly to each other, which in the field of energy and environmental protection has a broad application prospects. At present, the performance of thermoelectric materials is generally not high, through the introduction of nano-structure to improve the thermoelectric properties has become an important method of thermoelectric materials research. However, the experimental study of nanostructured low-dimensional thermoelectric materials still lacks an effective means to characterize the thermoelectric properties of low-dimensional materials in situ. The project is intended to produce thermodynamically controlled thermosetting films and uniformly sized thermoelectric nanofibers and integrate them into substrates with micropores and nanotaper grooves. XRD was used to study the phase and residual stress of the material. The strain of the low-dimensional thermoelectric materials was measured by selecting different substrates with different lattice constants. At the same time, the thermal and electrical transport properties of low-dimensional thermoelectric materials were analyzed by different modes of atomic force microscopy Conductivity, surface potential and IV curve, the Seebeck coefficient and so on. In particular, the thermal conductivity of low-dimensional thermoelectric materials was characterized by in-situ quantitative characterization using thermistor probes. And then through the probe to the sample to exert external stress, low-dimensional thermoelectric materials to study the multi-field coupling performance and stress-strain mechanism, and ultimately for high-performance thermoelectric material prediction, design optimization and safety assessment services.
热电材料作为一种新型能源材料,能实现热能和电能直接相互转化,在能源和环保领域具有广阔的应用前景。目前,热电材料性能普遍不高,通过引入纳米结构提高热电性能已成为热电材料研究的重要方法。然而纳米结构低维材料的实验研究,目前仍缺乏有效手段对低维材料热电性能进行原位定量表征。本项目拟制备厚度可控的热电薄膜和尺寸均匀的热电纳米纤维,并将其集成到带有微孔和纳米刻槽的基底。采用XRD研究材料的物相及残余应力;通过选择不同晶格常数的基底,对低维热电材料实现应变调控;同时采用原子力显微镜的不同模式对低维热电材料的热、电输运性能,包括电导率、表面电势及I-V曲线、塞贝克系数等进行测试。尤其是采用热敏电阻探针对低维热电材料的热导率进行原位定量表征。再通过探针给样品施加外应力,研究低维热电材料力热电多场耦合性能及应力应变影响机理,最终为高性能热电材料预测、设计优化和安全评估服务。
热电材料作为一种新型能源材料,能实现热能和电能直接相互转化,在能源和环保领域具有广阔的应用前景。目前,热电材料性能普遍不高,通过引入纳米结构提高热电性能已成为热电材料研究的重要方法。然而纳米结构低维材料的实验研究,目前仍缺乏有效手段对低维材料热电性能进行原位定量表征。本项目制备了厚度可控的纳米薄膜和尺寸均匀的热电纳米纤维,并将其集成到基底上。采用XRD研究材料的物相;通过选择不同晶格常数的基底,对低维热电材料实现应变调控;同时采用原子力显微镜的不同模式对低维热电材料的热、电输运性能,包括电导率、表面电势等进行了测试。尤其是采用热敏电阻探针对低维热电材料的热导率进行原位表征。再通过探针给样品施加外应力,研究了材料的局域耦合性能,最终为高性能热电材料预测、设计优化和安全评估服务。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于多模态信息特征融合的犯罪预测算法研究
卫生系统韧性研究概况及其展望
BiTe系低维纳米热电材料的去耦合性能调控
缺口三维应力应变场与材料性能耦合作用及其对断裂影响研究
微型热电系统的多物理场耦合建模与性能优化研究
考虑场相关界面效应的低维功能复合材料多场耦合等效行为研究